

DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review

Algal Biofuels Techno-Economic Analysis

Ryan Davis National Renewable Energy Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Goal Statement

- Algae TEA Project Objective:
- Provide process design and economic analysis support for the algae platform, to guide R&D priorities for both NREL and BETO
 - Translate demonstrated or proposed research advances into economics quantified as \$/ton feedstock or \$/gal fuel price
- •Project develops benchmark process models in Aspen Plus and related economic analysis tools, used to:
 - Assess cost-competitiveness and establish process/ cost targets for algal biofuel process scenarios
 - Track progress towards goals through State of Technology (SOT) updates
 - Conduct **sensitivity analysis** to identify impact of key variables, design alternatives on overall economics
 - Disseminate rigorous, objective modeling and analysis information in a transparent way (the "design report" process)
- •This project provides **direction**, **focus**, **and support for the BETO Program** by assisting in the development of cost benchmarks and future targets for use in MYPP planning
 - Guide R&D towards economic viability, eventual adoption of algal biofuels/products into U.S. market

Quad Chart Overview

Timeline

- Started: 2010
- Finish: 2017
- 75% complete

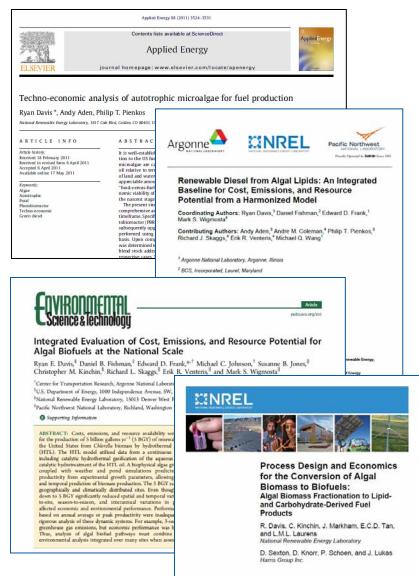
Barriers

- Barriers addressed
 - AFt-A: Biomass Availability and Cost
 - AFt-B: Sustainable Algae Production
 - AFt-H: Overall Integration and Scale-Up

Budget

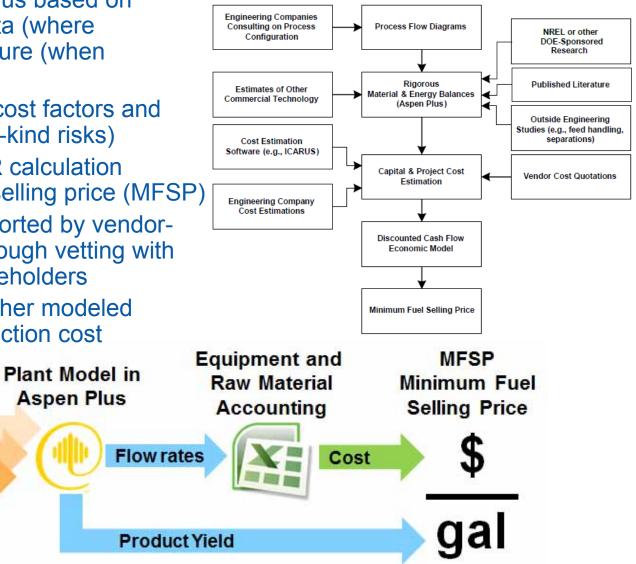
	Total Costs FY 10 –FY 12	FY 13 Costs	FY 14 Costs	Total Planned Funding (FY 15-Project End Date
DOE Funded	\$369k	\$255k	\$208k	\$1,013k
Project Cost Share (Comp.)*	NA	NA	NA	NA

Partners


- Partners
 - No partners with shared funding
- Other interactions/collaborations
 - ANL GREET LCA modeling team
 - PNNL BAT RA modeling team, algal HTL modeling team
 - Consortia substantial interaction with NAABB, SABC, ATP3
 - Industrial partners
 - Engineering subcontractors

Project Overview

- This project has a 5-year history of impactful, authoritative TEA on algal biofuel pathways
 - Commenced in late 2010 to revisit old TEA projections (Benemann, ASP, etc.)
 - Established harmonization models for lipid extraction process in 2012 with ANL, PNNL
 - Expanded on harmonization to consider HTL pathway in 2013
 - Design report on novel fractionation process published 2014
- TEA models used to set transparent benchmarks, quantify cost impact of funded R&D, highlight cost drivers/hurdles


• Phased approach:

- 1) Develop baseline models using best available data
- 2) Validate and peer review modeling assumptions, publish "design reports"
- 3) Assist in cost target development
- 4) Iterate with researchers and external stakeholders as new data becomes available to refine models
- Scope of analysis:
 - Biomass production/harvesting (→\$/ton)
 - Biomass conversion (→\$/gal fuels/coproducts)

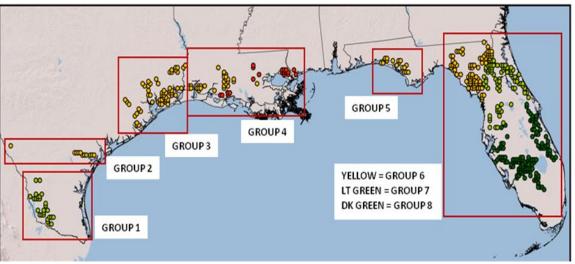
Approach (Technical)

- Process model in Aspen Plus based on NREL/partner research data (where available), published literature (when necessary)
- Assumes nth-plant project cost factors and financing (ignores first-of-a-kind risks)
- Discounted cash-flow ROR calculation determines minimum fuel selling price (MFSP)
- Credibility of analysis supported by vendorbased cost estimates, thorough vetting with industry and research stakeholders
- Research advances → Higher modeled conversion → Lower production cost

Feedstock Composition

Operating Conditions

Conversion Yields


Approach (Management)

- Project management tracked using milestones
- Activities are highly integrated with research efforts, assist in prioritizations for R&D
 - Example TEA identified more optimum process integration via whole-slurry processing ("CAP")
- Critical success factors:
 - Leverage process design to highlight barriers for scale-up/commercialization in underresearched areas
 - Conduct sensitivity analysis to find biggest "bang for the buck" items for targeted improvement
 - Critical to maintain credible engineering analyses that are transparent and unbiased Work with
 engineering subcontractors to reduce uncertainty, subject design reports to thorough external
 peer review
- Challenges:
 - Lack of meaningful data (large-scale, year-round, commercially relevant conditions) for key aspects of process = increased modeling uncertainty
 - TEA shows that all algal biofuel pathways are highly dependent on cost of biomass production critical to reach consensus on established system costs, consider new/novel designs

Project Milestones/Activities		FY14				FY15				FY16 (not yet set)		
		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Upstream process focus (biomass production logistics)												
Alternative farming strategy assessment												
Summarize available cultivation pond cost estimates												
Algal biomass production design report												
SOT assessment/out-year targeting updates												
Downstream process focus (biomass conversion to fuels)												
Alternative co-product evaluations												
Process support for ANL LCA study on ALU process												
Algal Lipid Upgrading (ALU) design report												
SOT assessment/out-year targeting updates												
\blacktriangle = Milestone. \blacktriangleright = Quarterly progress measure. \checkmark	= Go/r	no-ao (decisic	n								

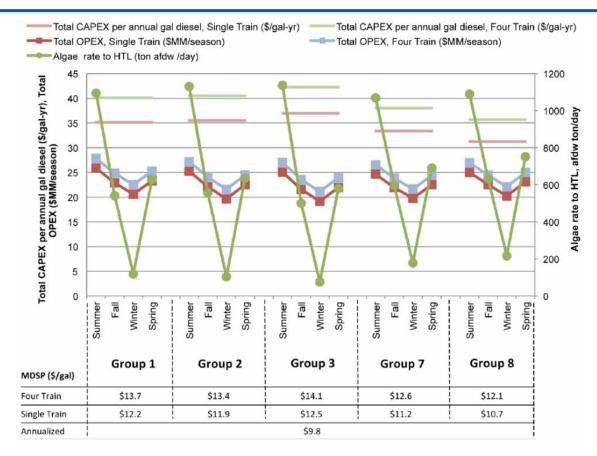
NATIONAL RENEWABLE ENERGY LABORATORY

Technical Accomplishments/Progress/Results: 2013 Algal HTL Harmonization

http://www.nrel.gov/docs/fy12osti/55431.pdf

2012 Harmonization:

- Focused on lipid-only extraction to fuel
- PNNL RA modeling identified ~450 farms (4,850 ha each) required to collectively produce 5 BGY of lipid-derived RD
- Ranked according to favorability for high productivity + low water footprint
 - Groups 4-6 lowest ranking performance


2013 Harmonization:

- Focused on HTL conversion of whole biomass to fuel
- Refined RA model identified fewer sites required to meet same 5 BGY fuel target, driven by higher gal/ton fuel yield
 - Groups 4-6 dropped out of required site consortia

Davis et al., ES&T 2014, 48, 6035-6042

NATIONAL RENEWABLE ENERGY LABORATORY

2013 HTL Harmonization TEA Results

Key TEA results:

- Consistent with 2012 harmonization, seasonal variability must be accounted for in algal biofuel models (neglecting variability under-estimates MFSP by ~\$1-4/gal)
- Reduced variability leads to lower MFSP
 - Site Group 8 = lower max productivity, but also lower variation between summer and winter productivity → lowest MFSP of all groups
 - Driven by more efficient CAPEX utilization = lower CAPEX cost per annual gal

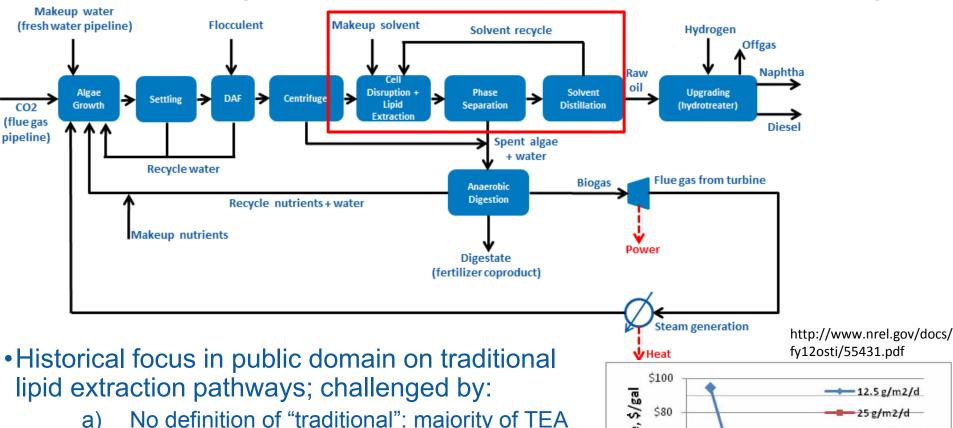
Technical Accomplishments/Progress/Results: 2014 ALU Design Report

- Detailed report documenting TEA model projections in Aspen Plus; published September 2014
 - <u>Transparent</u> communication of design details and targets to show a <u>plausible path to future cost goals</u>
 - Identify primary cost drivers, evaluate alternative scenarios, understand cost sensitivities
- TEA model focused on a path to ~\$4/GGE fuel costs via improved ALU ("algal lipid upgrading") conversion process
- Focus of design report scope is on *conversion* technology potential, excludes front-end aspects for biomass production
- Vendor quotes provided for all key operations via engineering contractor
- Thoroughly vetted through 12 industry peer reviewers
- Process pathway follows biochemical processing approach; selective conversion of specific constituents to products
 - Baseline configuration targets fuels from carb + lipid fractions

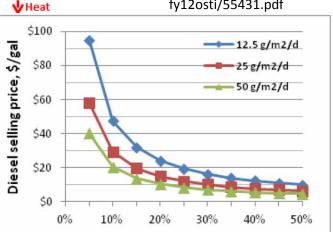
Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipidand Carbohydrate-Derived Fuel Products

R. Davis, C. Kinchin, J. Markham, E.C.D. Tan, and L.M.L. Laurens National Renewable Energy Laboratory

D. Sexton, D. Knorr, P. Schoen, and J. Lukas Harris Group Inc.


NREL is a national laboratory of the U.S. Department of Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.net.gov/publications.

Technical Report NREL/TP-5100-62368 September 2014


Contract No. DE-AC36-08GO28308

http://www.nrel.gov/docs/fy14osti/62368.pdf

Background: Prior TEA Focus – Lipid-Only Extraction (Benchmark as of 2013 Peer Review)

- a) No definition of "traditional": majority of TEA assumed a black-box lipid extraction process, but data largely lacking on high yield/wet extraction methods → increased uncertainty
- b) Asymptotic limits to cost reductions, dictated by achievable yields (≤50% lipids = ≥50% unutilized biomass)

Lipid Fraction, wt%

New Approach: Biochemical Processing to Multiple Products/ Co-Products ("ALU Fractionation")

- Alternative approach: biochemical processing for selective conversion of multiple biomass components to multiple fuel products/coproducts
 - Potential for similar fuel yields as HTL, but non-destructive conversion of biomass allows high selectivity towards numerous product options
 - "Plug and play" flexibility for conversion of carbohydrate, lipid, and protein fractions
 - Experimentally demonstrated high lipid extraction yield on wet biomass

2014 Design Report Results: Costs, Yields, Carbon Balances

Metric	Target	Process Carbon Balances
Minimum Fuel Selling Price (\$/GGE, 2011\$)	\$4.35	Vant
Feedstock Contribution (\$/GGE, 2011\$)	\$3.05	(Recycle to Ponds) 8.0% of algal carbon 15.9% of algal carbon 14.0% of tagal carbon
Conversion Contribution (\$/GGE, 2011\$)	\$1.30	(7.1% of total carbon) (17.0% of total carbon)
Yield (GGE/ton afdw)	141	Feedstock 100.0% of algal carbon
RDB Yield (GGE/ton afdw)	105	(88.0% of total carbon) Area 100: Pretreatment and (88.0% of total carbon) Area 200: Fermentation and
Ethanol Yield (GGE/ton afdw)	36	Natural Gas & Drier
C Efficiency to Fuels from Biomass	64%	0% of atgal carbon (3.8% of total carbon) Stillage
Feedstock		76.1% of algal carbon (66.9% of total carbon)
Feedstock Cost (\$/ton afdw)	\$430	Water Recycle Area 300: Lipid 0% of algal carbon Extraction and Makeup Solvent
Pretreatment + Conditioning*		Solvent Recovery 0% of algal carbon (2.3% of total carbon)
Solids Loading (wt%)	20% [15-25%]	Natural Gas 0% of algal carbon (1.9% of total carbon)
Acid Loading (wt% versus feed water rate)	1% [2%]	Spent Residue Raw Oil
Fermentable Sugar Release ("glucose yield")	90% [74%]	22.0% of algal carbon (21.4% of total carbon) 54.1% of algal carbon (47.8% of total carbon)
Glucan to Degradation Products	0.3% [1.5%]	
Hydrolysate solid-liquid separation	No <i>[No]</i>	Waste from Purification
Sugar Loss	NA (CAP process)	0.3% of algal carbon (0.4% of total carbon) Area 400 (0.4% of total carbon) Area 400 (0.4% of total carbon)
Fermentation*		Anaerobic Disection/CHP and Ungrading Narkshi
Total Feed Solids Loading (wt%)	20% [~6% sugars]	Light Gas to CHP 5.8% of algal carbon
Fermentation Batch Time (hr)	36 [18]	(5.1% of total carbon) (0.5% of total carbon)
Sugar diversion to organism seed growth	4% [ND]	H ₂
Fermentable Sugar to Product	95% [84%]	Fine Gas
Lipid Extraction + Upgrading*		24.5% of algal carbon (25.7% of total carbon) Digestate Natural Gas for Reformer
Solvent Loading (solvent/dry biomass ratio, wt basis)	5.0 <i>[</i> 5.9]	3.6% of algal carbon (3.0% of total carbon) (4.0% of total carbon)
Total convertible Lipid Extraction Yield	95% [87%]	
Polar Lipid Impurity Partition to Extract	33% [<11.5%]	
Hydrotreating RDB Yield (wt% of oil feed)	80% [ND]	
Hydrotreating H ₂ Consumption (wt% of oil feed)	1.7% <i>[ND]</i>	*Current experimental values shown in brackets

NATIONAL RENEWABLE ENERGY LABORATORY

Framing the Analysis: Sensitivity Scenarios

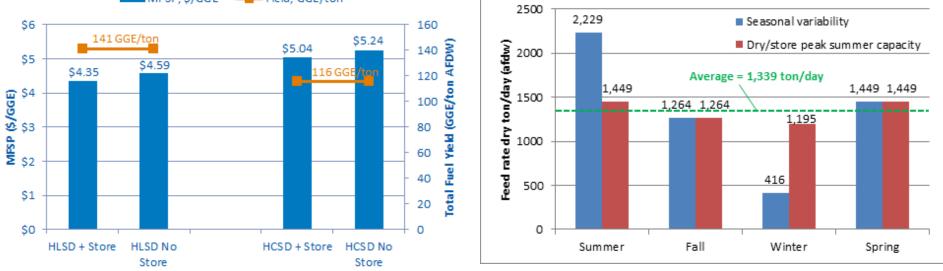
•Primary drivers:

- Feedstock cost: reducing to \$300/ton = \$3.42/GGE (includes cultivation CAPEX)
- Design feed rate: lose economy of scale at lower design capacities
- Extraction yield: critical to achieve high lipid recovery given up-front costs
- Total Capital Investment (uncertainty inherent to TEA methodology)

Collaboration with ANL: LCA Examination for ALU/HTL Pathways

Credit for slide content: Ed Frank, ANL

Scenario	Year		MFSP	Season	s Productivity		WTW GHG	
		(\$2	011/GGE)		(g/m²/d)	(gCC	D22e/MMBTL	J)
						Fuel cycle	Infrastructure	Total
Baseline ALU	FY12	\$	20.79	3	15.5	67500	8300	75800
National Scale HTL	FY13	\$	11.34	4	14.6	40100	-	-
HTL design case	FY14	\$	4.49	4	30	35700	1700	37400
ALU design case	FY14	\$	4.35	4	30	34900	2100	37000

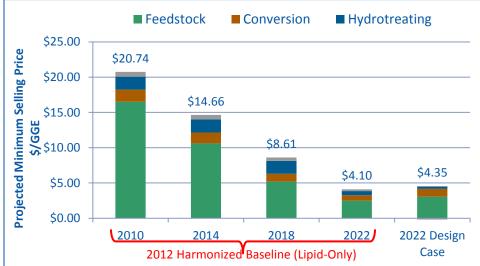

MFSP - Minimum fuel selling price

GGE - Gallons of gasoline equivalent

WTW GHG - Well to wheels (whole lifecycle) greenhouse gas emissions

The TEA / LCA / RA collaboration guides BETO's system integration and design

TEA for Biomass/Processing Alternatives



- Switch to no drying/storage of excess summer capacity (feed material straight from upstream cultivation) = 4-6% MFSP increase
 - Suggests that this option is also feasible for economics if full LCA identifies NG for summer drying is problematic
 - Must also consider equipment operability/design issues for such large seasonal swings in throughput
- Switch from HLSD to HCSD = 14-16% MFSP increase
 - Driven by 18% reduction in total GGE/ton yield (ethanol/RDB ratio increases from 35% to 50%, lower energy content in ethanol)
 - Moving forward, will be critical to consider what is ultimately viable for front-end cultivation targets given tradeoff between productivity and composition (lipid content)
 - HCSD biomass = earlier harvest point = higher g/m²/day productivity vs HLSD
 - Reasonable target case may be between these points = \$4.35-\$5.04/GGE, 116-141 GGE/ton

Relevance

NREL TEA modeling is highly relevant to BETO goals:

- Helps guide R&D, DOE decisions, out-year target projections
 - Technical targets (yields, process performance, etc)
 - Cost targets (forms basis for BETO MYPP goals)
- Identifies key R&D directions (yields, coproduct opportunities, etc)
- Analysis can serve a wide variety of stakeholders
 - Industry (facilitate interaction between industry, NREL, DOE)
 - Research community, decision makers
- This project supports BETO's efforts to encourage collaboration across multiple organizations:
 - Continued interactions with harmonization partners (ANL – LCA, PNNL – BAT, TEA teams)
 - Interactions with consortia:
 - NAABB: considered TEA implications for strains, dewatering technologies developed under NAABB
 - SABC: formed the basis for the ALU design case pathway
 - ATP3: TEA modeling support for test-bed sites across U.S., leveraging data to inform SOT and future target cultivation metrics/costs

Cost Projections From November 2014 MYPP:

Nov 2014 MYPP Critical Emphasis Area: Prioritizing Algal R&D Barriers: "Performing

integrative analysis to identify critical barriers and evaluate impacts on overall yield to developments in biology, cultivation, and processing."

Future Work

• Algal biomass design case:

- Develop a design report for the front-end process (cultivation through dewatering); effort will
 refine prior modeling estimates with more rigor, to understand what it "really takes" to get to algal
 biomass cost targets <\$500/ton Q3-4 milestones (2), Q4 Quarterly Progress Measure
- Key focus of work will be to investigate potential alternative low-cost cultivation options in addition to traditional raceways, and identify key cost drivers behind cultivation systems
- 2015 State of Technology assessments for FY15 R&D data:
 - Conduct preliminary SOT estimate to quantify fuel costs based on experimental data for ALU conversion ("CAP") process Q2 Quarterly Progress Measure
 - Finalized SOT assessment for fully integrated process; including measured productivity data for biomass cost model (from ATP3), and updated R&D data for conversion (NREL) – Q4 milestone
- TEA support for ATP3 consortia to run full year cultivation data from all testbed sites through biomass production model – Q4 milestone (ATP3)
- FY16 and beyond: TEA Product Ethanol or Hydrocarbons Purification Makeup water (fresh water pipeline) Hydrogen support for algae platform in Offgas Naphtha exploring options for further Dilute Acid Hydrolysis Solvent Upgrading Extraction Fermentation (hydrotreater) cost reductions (\$3/GGE): (flue gas Diese Resid Biomass Recycle water Go/no go milestone to assess • Protein Utilization Coproducts (optional) viability for alternative higher-value Recycle nutrients (optional) Makeup nutrients coproduct options (vs AD) within

context of ALU fractionation model – Q2 FY16 go/no go

 Likely to require value-added coproducts to achieve \$3/GGE targets, given high biomass cost Higher-value coproduct examples:

- Carbs: organic acids
- Lipids: PUFAs, epoxies
- Protein: fishmeal, bioplastics

Summary

- NREL Algae TEA project has made important achievements since 2013 peer review
 - Expanded on prior harmonization efforts to consider HTL conversion
 - Improved upon original 2012 ALU pathway model with establishment of fractionation process – promising yields, reduced uncertainty, improved costs
 - Established out-year design case target model presenting a path to \$4.35/GGE; leveraged by BETO to set MYPP projections
 - Quantification of sustainability metrics for design case conversion model
- TEA work is highly relevant to supporting program directions for BETO, near- and long-term R&D for NREL and partners
- Supports industry and research community via design reports, communication with stakeholders, external collaborations
- Further efforts planned moving forward around biomass cultivation/logistics modeling, consideration of low-cost farming options, assessment for coproduct opportunities

NREL, Sept, 2010, Pic #18229

Additional Slides

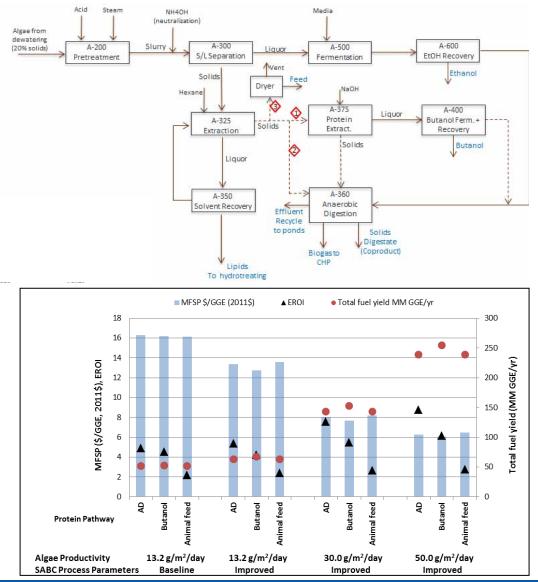
Responses to Previous Reviewers' Comments from 2013

- There is some concern as to how current the data used in the model are because of the stated lack of availability of primary sources.
- Regarding the need for realistic/current operational data, this is a point we recognize and continue to
 place a high priority on. As the reviewers note, this is typically challenging as much of the data on realworld, large-scale operations are held privately by industry with an understandable reluctance for such
 data to be utilized in publicly documented models. However, improvements continue to be made here
 as data on the most critical operation (cultivation) is currently being generated by the ATP3 consortium
 of which NREL is a member, with upcoming milestones to run a full year of productivity data through
 NREL's biomass cost models for all participating test-bed sites across the U.S. Additionally, with the
 change to the new ALU fractionation model, all pertinent data related to back-end conversion steps are
 now based on first-hand experimental work conducted at NREL.
- Model needs to be compared with a design for less-than-peak capacity.
- While the prior 2012 harmonization models were based exclusively on designing equipment for peak (summertime) capacity, newer models as documented in NREL's 2014 ALU design report consider two options: (1) size all equipment for peak capacity, or (2) divert excess capacity to be dried and stored for use in the winter (thus designing equipment to a capacity lower than peak/summertime). More optimum economics were identified for option (2), thus the ALU design case model is in fact designed for lessthan-peak capacity, acknowledging logistical questions that may follow this scenario.
- TEA needs to be extended to consider a protein meal co-product option.
- While we had briefly considered animal feed as a coproduct option in our prior 2012 harmonization modeling (e.g. http://www.nrel.gov/docs/fy12osti/55431.pdf, section 4.1), we revisited this option in more detail during preliminary feasibility modeling efforts in early FY14 to identify an optimum use for the protein residue in NREL's ALU design report. The results of the assessment could not be shared in the presentation due to time constraints, but are provided as shown in slide 23. In summary, at an assumed protein meal value of \$350/tonne (higher than typical feed prices), economics fared worse than the base case routing the residue to anaerobic digestion, and penalties were also incurred for sustainability given the loss of nutrient recycle and the need to dry the protein feed using natural gas.

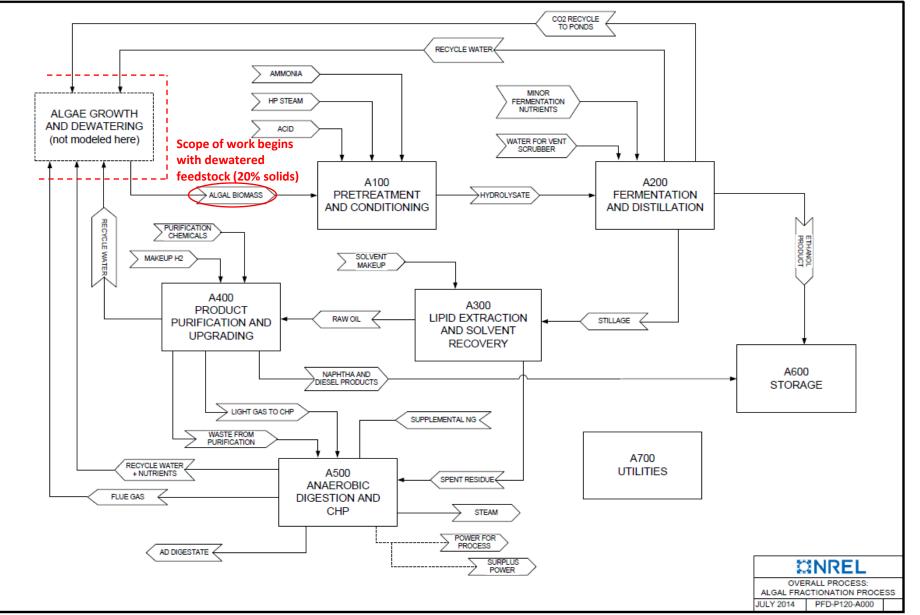
Publications, Patents, Presentations, Awards, and Commercialization

Publications (since 2013 review):

- R. Davis, C. Kinchin, J. Markham, et al., "Process design and economics for the conversion of algal biomass to biofuels: Algal biomass fractionation to lipid- and carbohydrate-derived fuel products." NREL Technical Report NREL/TP-5100-62368, September 2014. <u>http://www.nrel.gov/docs/fy14osti/62368.pdf</u>
- L. M.L. Laurens, N. Nagle, R. Davis, et al., "Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based biofuels production." *Green Chemistry* (2015) 17: 1145-1158
- J.C. Quinn, R. Davis, "The potentials and challenges of algae based biofuels: A review of the technoeconomic, life cycle, and resource assessment modeling." *Bioresource Technology* (2014), <u>http://dx.doi.org/10.1016/j.biortech.2014.10.075</u>
- R. Davis, D. Fishman, E. Frank, et al., "Integrated evaluation of cost, emissions, and resource potential for algal biofuels at the national scale." *Environmental Science & Technology* (2014) 48: 6035-6042
- C.E. Canter, R. Davis, M. Urgun-Demirtas, E.D. Frank, "Infrastructure associated emissions for renewable diesel production from microalgae." *Algal Research* (2014) 5: 195-203.
- A. Miara, P.T. Pienkos, M. Bazilian, et al., "Planning for algal systems: An energy-water-food nexus perspective." *Industrial Biotechnology* (2014) 10: 202-211.
- M. Bazilian, R. Davis, P.T. Pienkos, D. Arent, The energy-water-food nexus through the lens of algal systems." *Industrial Biotechnology* (2013) 9: 158-162.


Presentations (since 2013 review):

• R. Davis, C. Kinchin, J. Markham, et al., "Techno-economic analysis for a novel route to algal biofuels via biochemical processing: Process and cost targets towards achieving viability." Presented at the Algae Biomass Summit, San Diego, CA; October 2014.


Backup Slides

Protein Coproduct Tradeoff Assessment

- Early TEA work for fractionation process considered three options for protein residue utilization:
 - "Fermentation" to C4+ alcohols
 - AD
 - Dry and sell as animal feed @ \$350/tonne
- Analysis found poor results for animal feed with higher MFSP and much lower EROI (loss of nutrient recycle, NG use for drying)
- Comparable MFSP between butanol vs AD options, but better EROI for AD given lower energy demands and higher biogas production
- Conclusions led to selection of AD for design report basis, but opportunity for more evaluation moving forward

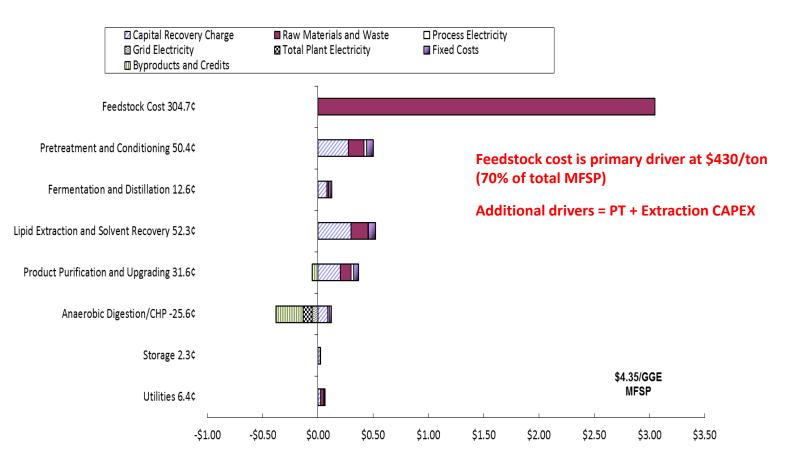
Overall Process Schematic – 2014 ALU Design Report

Design & Financial Assumptions – ALU Design <u>Report</u>

Process Targets			
Feedstock rate	1,339 ton/day (AFDW, annual average)		
Biomass composition	41% lipids (as FAME); 38% carbohydrates		
On-line time	330 days/year		
Fermentable sugar yield from PT	90%		
PT acid concentration	1% vs liquor feed to PT		
Fermentable sugar to ethanol	95%		
Lipid extraction yield	95%		
Polar lipid impurity partitioning to extract	33%		
Extraction solvent loading	5 kg hexane/kg dry biomass		
Hydrotreating yield, lipid-to-diesel	80 wt% of feed		

Financial Assumptions			
Target internal rate of return (IRR)	10%		
Cash flow methodology	Discounted cash flow rate-of-return (DCFROR)		
Cost-year dollars	2011		
Debt : equity ratio	60% debt / 40% equity		
Loan terms	10 year, 8% interest		
Tax rate	35%		
Depreciation schedule	MACRS: 7 year (general), 20 year (power)		
Plant lifetime	30 years		
Feedstock cost	\$430/ton (AFDW), 20% solids from dewatering		
Power coproduct credit	5.7 ¢/KWh		

NATIONAL RENEWABLE ENERGY LABORATORY


ALU Design Report: Conversion Stage Sustainability Metrics

Sustainability Metric	2022 Design Case (Summer Storage Base Case)	2022 Design Case (No Storage Alternative)
GHGs (g CO ₂ -e/MJ fuel) (fossil emissions)	32.2	10.4
Fossil Energy Consumption (MJ fossil energy/MJ fuel)	0.33	0.17
Total Fuel Yield (GGE/dry ton)	141	141
Biomass Carbon-to-Fuel Efficiency (C in fuel/C in biomass)	63%	63%
Total Carbon-to-Fuel Efficiency (C in fuel/C in biomass + NG)	55%	58%
Water Consumption (m ³ /day; gal/GGE fuel)	2,563 m ³ /day; 3.6 gal/GGE ¹	1,876 m³/day; 2.6 gal/GGE ¹
Net Electricity Export (KWh/GGE)	0.9	0.9

¹ Process water demands only; does not include moisture content of incoming feedstock

- Sustainability metrics run for design case; only considers conversion stage (not a full WTW LCA)
- Including consideration of sustainability metrics provided quantified comparison for GHG, fossil, water benefits when switching to no storage of excess summer biomass (contrast vs TEA result)
- Full WTW analysis required to fully understand sustainability impacts, but useful to consider conversion stage alone as a quick assessment in design report

ALU Design Report: Cost Drivers

