DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review

Realization of Algae Potential Algae Biomass Yield Program

March 25, 2015 Technology Area Review

Peter Lammers, P.I. New Mexico State University -> Arizona State University

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Goal Statement

- Develop an integrated process for producing 2,500 gallons of bio-fuel intermediate per acre per year through radical improvements in algal areal productivity and lipid content
- Successful demonstration will advance the DOE goal of producing 5,000 gallons per acre per year by 2022
- Benefits to the U.S./BETO include
 - Increasing the viability and deployment of renewable energy technologies
 - Spurring the creation of a viable domestic bio-industry
 - Evaluation of engineered productivity enhancements in elite strain versus an extremophile strain chosen for crop rotation purposes
 - Evaluation of Sequential HTL options for nutrient recycling

Quad Chart Overview

Timeline

- March 1, 2014
- Sept 30, 2016
- % Complete 40% (time)

Budget

	Total Costs FY14- 15	Costs as of 12/31/14	FY 15 Costs	Total Planned Funding (FY 15-Project End Date (Non FFRDC)
DOE Funded		\$543K		\$4.265M
NMSU/ASU Pan Pacific NMC WSU		\$99.9K \$83.2K \$24.7K \$0		

*If there are multiple cost-share partners, separate rows should be used.

Barriers

- Barriers addressed
 - Feedstock supply
 - Conversion R&D
 - Sustainability

Partners

- Partners
 - New Mexico State, Washington State and Arizona State Universities
 - o Pan Pacific, Algenol Biofuels
 - New Mexico Consortium
 - National Labs: Argonne, Los Alamos, Pacific Northwest
 - UOP-Honeywell (bio-crude feedstock analysis)

1 - Project Overview

- Genetic improvements in mixotrophic algae LANL/NMC
 - 40% enhancement from chlorophyll antenna size optimization
 - 3 fold improvement in oil content from cellobiose utilization
- Horizontal photobioreactor cultivation NMSU/ASU
 - EPA-exempt (40 CFR Part 725) outdoor testing of improved strains
 - Crop rotation for biological solution to temperature management
 - Calculate raceway productivity from climate simulation modeling
- Sequential Hydrothermal Liquefaction -WSU/NMSU/ASU
 - Enables C, N and P recycle to cultivation
 - Cleaner fuel (less N) with bio-char used for HTL heat integration
- Systems Modeling Pan Pacific, Argonne, Algenol
 - LCA and TEA process models for iterative optimization of cultivation and pre-processing with mass and energy balance data
 - Modeling enables go/no-go decision for Phase 2

2 – Approach (Technical)

Key Challenges

- ✓ Strain stability and thermo-tolerance via strain rotation
- \checkmark Cultivation mixing system, CO₂ delivery and energy consumption
- ✓ Achieve harvest density of 2-3 g/L to lower harvesting costs
- ✓ Heat integration and intermediate separations for SEQ-HTL
- ✓ C, N and P recycle from HTL

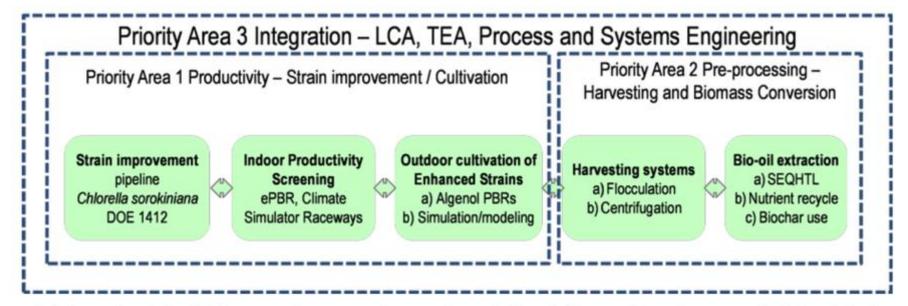


Figure 1. Schematic of the REAP research program. Integration activities define, track, and measure R&D in cultivation (Priority Area 1) and Pre-processing (Priority Area 2)

2 – Approach (Management)

- Team includes all expertise required to execute the program
 - ✓ LANL/New Mexico Consortium algal strain improvement
 - ✓ NMSU/ASU outdoor cultivation and HTL testing
 - ✓ WSU sequential hydrothermal liquefaction
 - ✓ *PNNL quantitative growth modeling*
 - ✓ ANL national leader in LCA
 - ✓ Pan Pacific ASPEN modeling/TEA
- Two face-to-face meetings (Jan. '14 & '15)
- Monthly team presentations via Adobe Connect
- PI Visits to WSU (July '14) & LANL/NMC (Feb '15)

Aspen model of REAP unit operations

Aspen model of PBR cultivation for REAP process has successfully been constructed in five stages:

- Stage 1- Pre-Reactor Components
- Stage 2- Algal Growth
- Stage 3- Downstream Processing
- Stage 4- Model of SEQHTL unit operation
- Stage 5- Linkage of stages for complete process model

Aspen model of PBR cultivation

Outcomes:

- Integrated end-to-end Aspen system model for REAP process including CO₂ absorption, simulations of algal growth reactors for PBR, downstream processing and SEQHTL processing.
- Initial fully converged Mass and Energy balances for integrated REAP process.
- Initial costing of process economics using Aspen database.

3 – Technical Accomplishments/ Progress/Results

- Strain improvement Chlorella
- Cultivation trials, PBR mixing systems and CO₂ delivery
- Initial Sequential Hydrothermal Liquefaction Results
- TEA and LCA modeling

Strain Selection One elite strain, one extremophile

- 1. C. sorokiniana strain selection
 - UTEX 1230, 1228 and NAABB 1412
 - Genomes are only ~5% conserved
 - Initial genetic toolkit developed for 1230
 - Thermo-tolerance 1230 > 1412 > 1228
 - Productivity 1412 > 1230
 - Final selection for genetic enhancements is 1412
- G. sulphuraria summer season strain is a low-pH extremophile, tolerant to 56°C, low lipid/high carbohydrate, versatile heterotroph
- 3. Strain rotation for temperature management

REAP pairs this cultivation approach with highly synergistic sequential hydrothermal extraction technology **GOUTE** the stage **CONTROL** of the stage **CONTROL** of the remaining lipid-enriched biomass directly to cleaner bio-rule intermediate with lower nitrogen content; and iii) *efficiences* the need for unit operations involving drying or cellular disruption. Outdoor testing of enhanced strains in Algend's nexpensive and scalable PBRs provides

Imp	Improved Algal Biomass Productivity – Priority Area 1								
Objectives	Outcomes	Impacts							
1. Genetic enhancement of mixotrophic	40% increase in biomass productivity	2500 gal/acre-yr by end of 2014							
Chlorella sorokiniana	and 300% increase in oil content	3500 gal/acre-yr by end of 2015							
2. Enclosed PBR Cultivation Systems for	Outdoor PBR systems for >3 gAFDW	Productivity of Greater than 25 g/m2-day							
EPA-exempt Outdoor Testing Enhanced	per Liter autotrophic density and	at Lower CAPEX and OPEX vs.							
Strains; Raceway Productivity Derived	6 gAFDW per Liter mixotrophic density	Harmonization Model (1)							
from Climate-Simulation Models	>50% oil content by mass								
Improve	d Pre-processing Technologies – Priorit	y Area 2							
Objectives	Outcomes	Impacts							
3. Innovative Harvesting and Dewatering	Harvested algae resulting in 5% solids;	Energy Expended Less than 10% of							
Systems	dewatering resulting in 30% solids	Energy Content direct input to SEQHTL							
4. Sequential Hydrothermal Extraction	Continuous SEQHTL process design								
Technologies to Produce Bio-Fuel	balancing High Efficiency Bio-Oil	Cleaner Bio-Fuel Intermediate qualified							
Intermediate with C, N and P Recycle to	Extraction and Bio-char Production for	for UOP Fuel Upgrade Specifications							
Cultivation	Heating Energy Requirement								
Technical Advances to Enable	e the Integration of the Algal Biomass Uni	it Operations – Priority Area 3							
Objectives	Outcomes	Impacts							
5. Physical Integration and Systems	Iteratively Optimized Unit Operations for	Optimum End-To-End Productivity with							
Modeling	Algal Cultivation and Preprocessing	Mass and Energy Balance Data							
6. Develop LCA, TEA and Process	GREET, Techno-Economic and Aspen	Go Decision Triggers Engineering and							
Model of Integrated Process	Models Enabling go/no-go Decision for	Design for 1 Acre Integrated Pilot (FEL-							
	Phase 2	2)							
containment in line with standards administered by EPA TSCA (40 CFR Part 725) to allow outdoor									

containment in line with standards administered by EPA TSCA (40 CFR Part 725) to allow outdoor cultivation of engineered strains. The PBR approach also allows higher harvest concentrations reducing energy demand. Biochar derived from liquefaction provides the heating source for SEOHTL, thus REAP

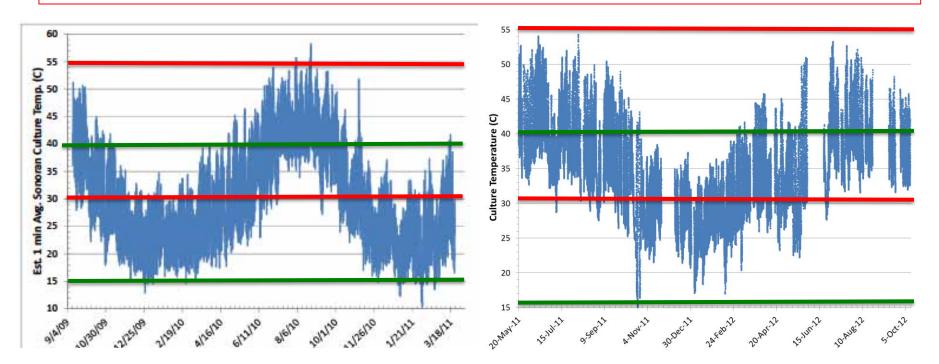
Progress towards antenna size optimization Not quite there yet

Strain	Colonies screened	Transgenics (Chl a/b ratios)
Cs-1228 Chl a/b ratio (2.0)	300	2.0
Cs-1230 Chl a/b ratio (2.3)	350	3.0
Cs-1412 Chl a/b ratio (2.0)	400	3.4 (optimum is 5)

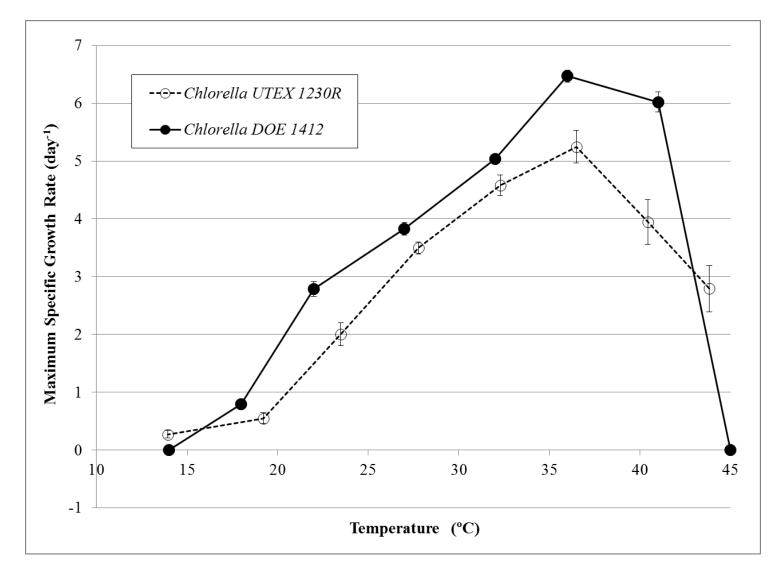
The failure to achieve higher ChI a/b ratios in Cs-1228 and Cs-1412 transgenics may reflect DNA sequence dissimilarities with the Cs-1230 CAO RNAi gene (88% identity) or gene copy number (2X)

Query	8	GAGCAGCTCAAGGACTTTTGGTTCCCTGTCGAGTTTAGCGCCAGCCTGGTGGAGGACCGA	67
Sbjct	802	GAGCAGCTCAAGGACTTTTGGTTCCCGGTGGAGTTTAGCGCCAGCCTGGTGGAGGGCCGC	861
Query	68		127
Sbjct	862	ATGGTGCCCTTTGAGCTCTTTGGAGACATGTGGGTGCTGTTCCGAGATGAGAGCGGAGCA	921
Query	128		187
Sbjct	922	GCGGCGTGCGTGAAGGACGAGTGCGCACACCGCGCCTGCCCGCTGTCGCTGGGGTCCCTG	981
Query	188		247
Sbjct	982	GTGGATGGCCGCCTGCAGTGCCCCTACCACGGCTGGGAGTACGATCGTGAGGGTGCCTGC	1041
Query	248		307
Sbjct	1042	ACCAAGATGCCCTCCACGGCCTTCTGCAAGGGCATCAAGGTGCAGGCGCTGCCGGTGGCG	1101
Query	308		367
Sbjct	1102	GAAGCCGATGGCCTAGTCTGGGTGTGGCCGGGGCGGCCCGAAGCGCGCGC	1161
Query	368		427
Sbjct	1162	CCGCCGCCACTGCTGGCGCGTCCGCCGGCGGGCTTTGAGGTGCACGCGGAGCTGGTGCTG	1221
Query	428	GATGTGCCGGTGGAGCACGGC 448	
Sbict	1222	GATGTGCCAGTGGAGCACGGC 1242	

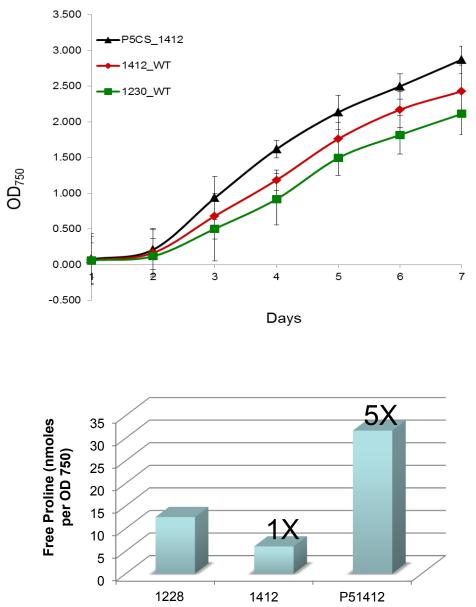
Thermo-tolerance Issues

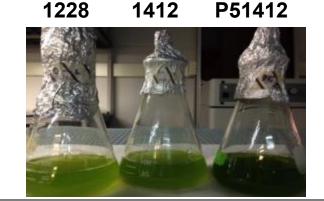

Temperature data for 20 cm depth horizontal PBR.

The area between the red lines indicates acceptable temperature range for *Galdieria*


The area between the green lines shows temperature range in which more temperate algae like *Chlorella* would grow.

Sonora, Mexico


Fort Myers, FL

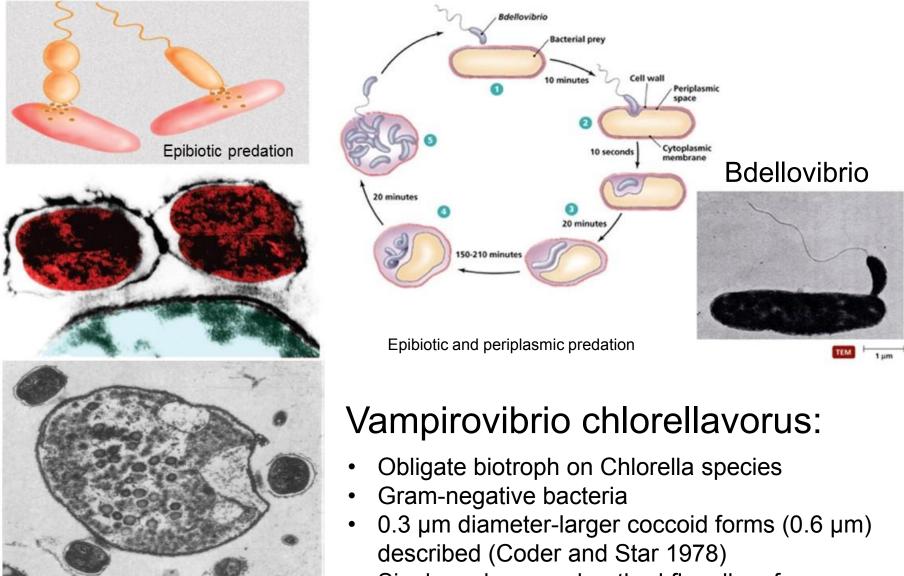


Maximum Specific Growth Rate as a Function of Temperature: *Chlorella* UTEX 1230R vs. DOE 1412

Enhanced heat tolerance in *Chlorella sorokiniana – 1412* mutants over-accumulating (5X) proline

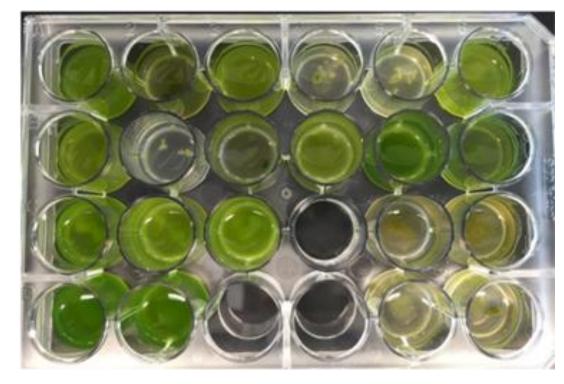
Growth at 40 °C

- 1412 over-expressing 1-pyroline-5-carboxylate synthase gene (P5CS)
- P5CS transgenics have 20% greater productivity than the wild-type parent 1412.


Angela Pedroso Tonon, Los Alamos National Laboratory

Vampirovibrio chlorellavorous causing C. sorokiniana crashes?

Results of PCR tests by Judy Brown @ Univ. Arizona


Case# - Sample#	Algal Strain	Sample Identification and specification (provided by sender)	Condition of Sample	Detection of V.chlorellavorous (positive/negativ e)	Restriction Digestion EcoRI, V. chlorellavorous- specific
2 P.	DOE1228 &	Sample Set 1, tube 1: Culture is	Frozen Liquid		
14.06-1a	Coelestrella	1228+Coelestrella grown in our hoop-house	Culture	Positive	Pooled and validated
	DOE1228 &	Sample Set 1, tube 2: Culture is			
14.06-1b	Coelestrella	1228+Coelestrella grown in our hoop-house	Frozen Liquid Cultu	Positive	Pooled and validated
2	DOE1228 &	Sample Set 1, tube 3: Culture is			
14.06-1c	Coelestrella	1228+Coelestrella grown in our hoop-house	Frozen Liquid Cultu	Positive	Validated
		Sample Set 2, tube 1: Culture is 1412 grown	24 - 24 - A		
14.06-2a	DOE 1412	in outdoor open raceways from 5/27/14-	Frozen Liquid Cultu	Positive	Pooled and validated
		Sample Set 2, tube 2: Culture is 1412 grown			
14.06-2b	DOE 1412	in outdoor open raceways from 5/27/14-	Frozen Liquid Cultu	Negative	N/A
		Sample Set 2, tube 3: Culture is 1412 grown			
14.06-2c	DOE 1412	in outdoor open raceways from 5/27/14-	Frozen Liquid Cultu	Positive	Pooled and validated
		Sample Set 3: Culture 1228 in hybrid system		-	
14.06-3	DOE 1228	floating water basin 8/14/14-8/29/14 (one	Frozen Liquid Cultu	Positive	Pooled and validated
		Sample Set 4: Culture 1228 grown in hybrid			
14.06-4	DOE 1228	system floating water basin 9/4/14-9/24/14	Frozen Liquid Cultu	Positive	Pooled and validated
		Sample Set 5, tube 1: Culture is			
14.06-5a	DOE 1412	1412.1grown in outdoor open raceways	Frozen Liquid Cultu	Positive	Pooled and validated
		Sample Set 5, tube 2: Culture is			
14.06-5b	DOE 1412	1412.1grown in outdoor open raceways	Frozen Liquid Cultu	Positive	Pooled and validated

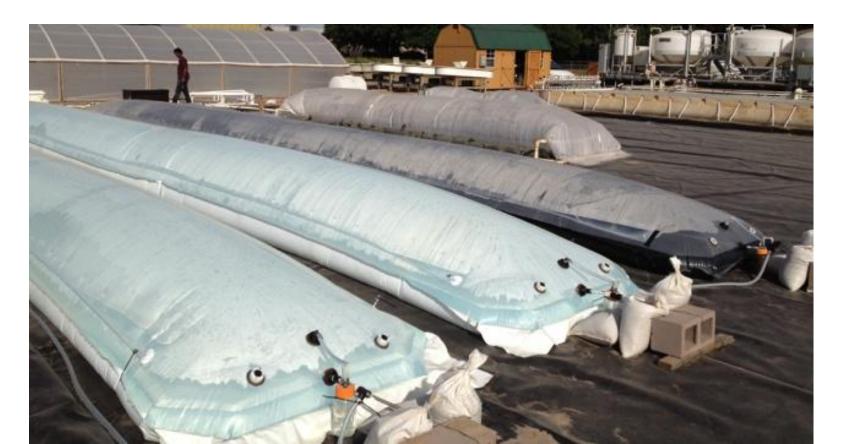
Predatory Bacteria: Bdellovibrionaceae

• Single, polar non-sheathed flagellum for motility

Anti-Microbial Peptides tested for inhibition of *Vampirovibrio* and

Dr. Satish Rajamani

A1- CecropinA


- A2- CecropinB
- A3- Maginin2
- A4- W16-CA
- A5- LactoferricinB
- A6- MsrA
- **B1-** Dermaseptin
- B2- Mellitin
- **B3-** TemporinA
- B4- TemporinF
- **B5-TemporinL**
- B6- TemporinG
- C1- Piscidin-1
- C2- Piscidin-2
- C3- Piscidin-3
- C4- Empty well
- C5- Kanamycin (50ug/mL)
- C6- Carbenicillin (125mg/mL)
- D1- Uninfected Cs1412
- D2- Uninfected Cs1412
- D3- Empty well
- D4- Empty well
- D5- Cs1412 Infected with Vampiro
- D6- Cs1412 Infected with Vampiro

Genetic Enhancements Schedule

		-15	-15	May-15	-15	15	Aug-15	-15	-15	51-1	-15	16	-16
	Activity	Mar-15	Apr-15	May	Jun-15	Jul-15	Aug	Sep-15	Oct-15	Nov-15	Dec-15	Jan-16	Feb-16
Task	Transgene Chlorophyll a oxygenase (CAO) (Sangeeta)												
Subtask	Engineer constructs												
Subtask	Transform and confirm expression												
Subtask	Phenotypic characterization												í.
Milestone	Mutant delivery												
Task	Transgene Cellobiose transporter / B-glucosidase (Amanda)												1
Subtask	Engineer constructs												
Subtask	Transform and confirm expression												
Subtask	Phenotypic characterization												
Milestone	Mutant delivery												
Task	Thermotolerance												
Subtask	Culturing in ePBR												Ĵ.
Subtask	Transcriptome analysis												
Subtask	Selection of target transcripts												
Subtask	Engineer constructs												
Subtask	Transform and confirm expression												
Subtask	Phenotypic characterization												
Milestone	Mutant delivery												
Task	Control of Vampirovibrio infections in Chlorella cultures (Sathish)												
Subtask	Growth and Characterization of Vampirovibrio with Chlorella												
Subtask	Identify and develop strategy for Vampirovibrio control							l					
Milestone	Implemented strategy												

Cultivation System Overview

- Closed Plastic Photobioreactors
 - Mixing by paddlewheel
 - Mixing by hydraulic driven waterfoil (Algenol)
 - Hybrid tubular plastic with waterfoil

<u>Horizontal</u> <u>Photobioreactors</u> Enclosed raceway design, passive solar heating, **paddlewheel mixing**, expandable from 4 to >75 linear feet



100 L/m² at 10 cm depth

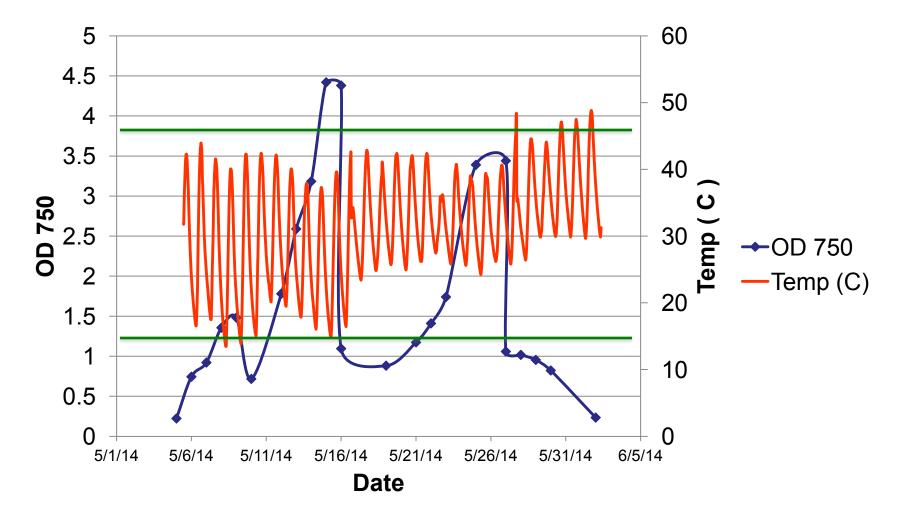
200 L/m² at 20 cm depth

Hybrid System

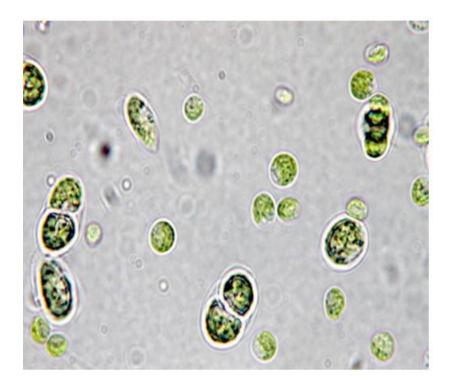
- Tubular Plastic Bag with hydraulic waterfoil mixing system
- Easier to set up, avoids weakness at bulkhead fitting at ends of the Algenol bags (leak prevention)
- Floated on a water basin to provide temperature control for summer growth of *C. sorokiniana*

List of PCR primers:

				Chlorophyta		Rhodophyta				
			Chlorellaceae				idiaceae	Galdieriaceae		
		~Product	Coelastrella	Chlorella s	sorokiniana	C. caldariu	m/C. merolae	G. sul	ohuraria	
Marker	Primer set	size (bp)	NMSU1	1412	1230	5510	MS1-YNP	5572	5587.1	
Rubisco Large subunit	RbcL F/R	550		•	•	•	•	•	•	
Euk. 18S rDNA	Cdm F/R	750	•	•	•	•	•	•	•	
Algal 18S rDNA ITS1	ITS 1F/2R	350-400	•	•	•	•	•	•	•	
Chlorella specific 18S rDNA	ChspeR/TresR	195		•				-		
18S rDNA-ITS1	CdmF/ITS2R	1300	•	•	•		-	-	-	
Chlorophyte plastid genes	UCP5 F/R	1300	•	•	•	•	•	-	-	
Rhodophyte plastid genes	URP1 F/R	440-500	•				•	•	•	
C. Merolae URA5.3	URA5F/6R	725	-	-	-	•	•	•	•	
Cox2-Cox3 intergenic spacer	Cox2f/3R	300-500	•	•	•	•	•	٠	•	
Simple Sequence Repeats	SSR9 F/R	573		-		_	•	-		

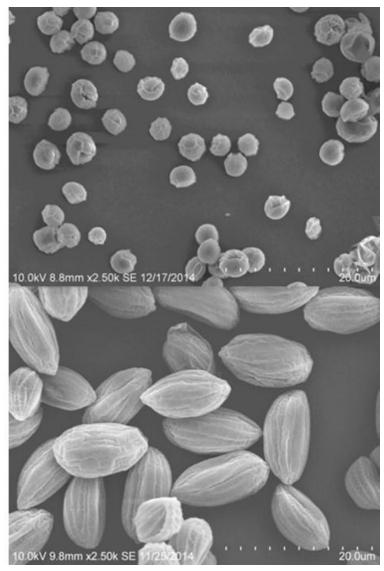

• PCR product amplified

No PCR product amplified

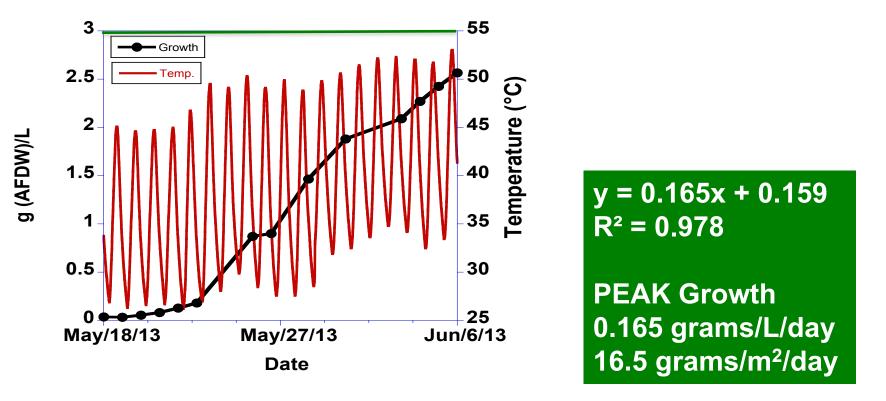

Black box: universal (euk/algae) primer set; green box: green algae specific primer set; and red box: red algae specific primer set.

Chlorella sorokiniana NAABB 1412.1 Peak Growth in enclosed horizontal PBR at 30 g/m2/day May 2014 in Las Cruces, NM

60 L 120 L 480 L Temp Spike - crash

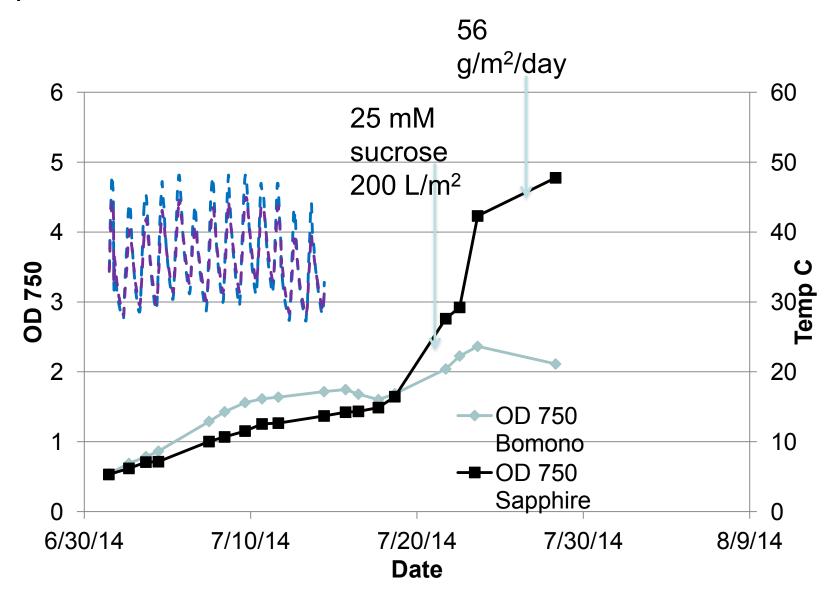


Biological Risk #2 Competitor Algae - Coelastrella

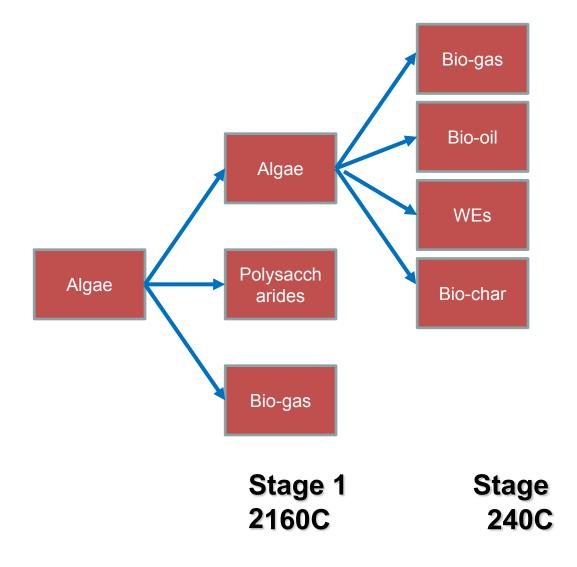


Electron micrograms - Peter Cooke

Strain isolation and characterization – Mark Seger



2013 Outdoor Growth of *Galdieria sulphuraria CCMEE* 5587.1^{**} in an Enclosed Horizonal PBR 10-6m-Depth:5% CO₂ in Air, @ 2 L/min



** Retrospective DNA analysis documented this was actually a mixture of *G. sulphuraria* and *C. merolae*

Effect of Sucrose on Outdoor Growth Rate of Galdieria sulphuraria

SeqHTL-Reaction Network

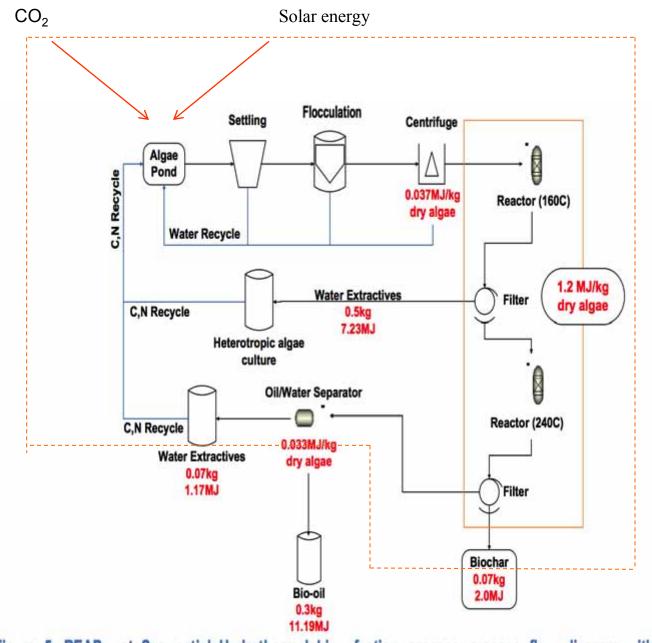
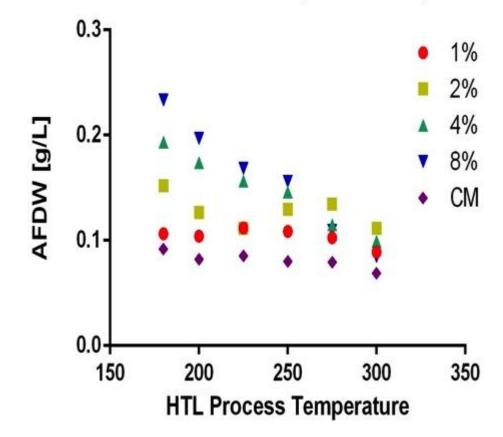
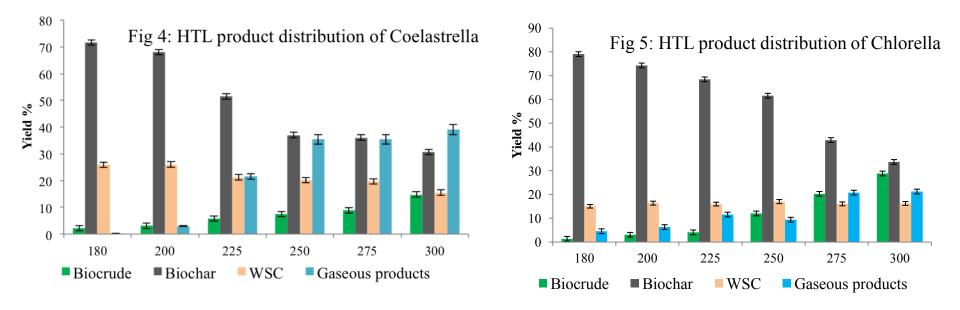
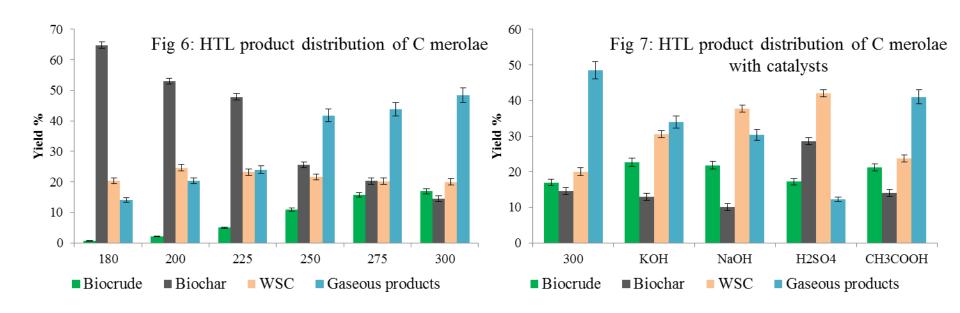



Figure 5. REAP wet Sequential Hydrothermal Liquefaction process process flow diagram with energy budget. Energy values are normalized to algal ash free dry weight.


Pure Heterotrophic Growth of *G. sulphuraria* Microtiter plate assav

Biomass density after 3 days



DHTL- Coelastrella, Chlorella Nutrient Replete Cultures

Max Bio-oil yield: 33.6%

DHTL-C. merolae/G. suphuraria Nutrient Replete Cultures

Max Bio-oil yield: 21.22%

Results: Baseline Model

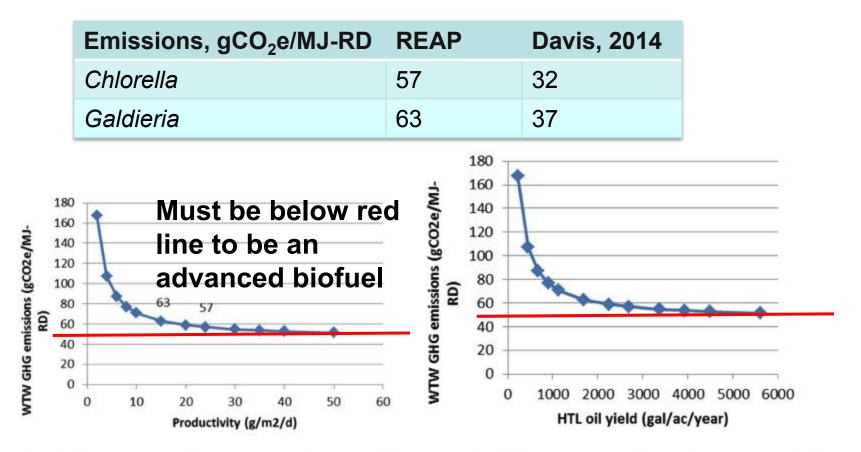
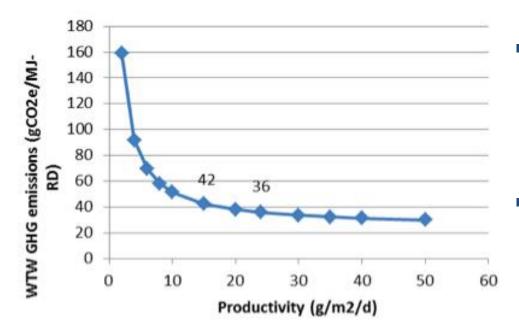



Figure 2: GHG emissions for hydrocyclone, centrifuge, and SEQHTL. The oil yield was computed by assuming 330 days/year, 3.1 kg algae/kg-oil, and 0.9 kg/L for the oil density

- REAP has high emissions with the baseline assumptions
- Cannot be overcome by increasing the productivity

Alternative Scenarios to reach 48 gCO2e/MJ

Scenario	<i>Chlorella</i> (24 g/m2/d)	<i>Galdieria</i> (15 g/m2/d)
Baseline	57 gCO ₂ e/MJ-RD	63 gCO ₂ e/MJ-RD
Belt filter press	50	57
18 wt% feed to HTL	44	51
Use biochar for heat	36	42

- Biochar in 80% efficient boiler, 29 MJ/kg (HHV)
 - Recovery energy neglected
- Productivity must be kept above 12 g/m2/d to satisfy the emissions target
 - An underestimate!

Constraints on Experiments

Systerm	Constraint
Cultivation	 Total energy < 48 KWh/ha/d Likely need to be <u>lower</u> than this If winter productivities are low, must reduce power further
HTL	 No solvents that require recycling? Feed at 20 wt%? (under discussion) Stage 2 yields measured with Stage 1 remnants from separation
Harvest / dewater	 Energy use less than that in current model Cut costs

- Quick and dirty TEA says we must solve these while cutting costs
 - Solve problems by avoiding them
 - Simplify the system

5 – Future Work

- Issues: <u>Staggered start</u> FFRDCs funded one year ahead of Universities and Sub-contractors who worked "at risk" through calendar 2014
- Genetic enhancements are lagging behind schedule
 - Strain issues, construct regulatory elements
- Low temperature water extractive reuse with Galdieria outdoors to enhance productivity to take advantage of high culture stability
- CO₂ utilization in Algenol vs paddlewheel horizontal PBRs
- Flocculant identification and dosing
- SEQ-HTL design (focus on separations & heat integration)
- Data collection with continuous flow HTL apparatus
- Supply numerous data needs for TEA and LCA

Relevance/Key Objectives

• Addresses many of BETO's barriers

Aft-A	Biomass availability	Aft-B	Sustainable algae production	Aft-C	Biomass genetics
Aft-D	Sustainable harvesting	Aft-G	Feedstock properties	Aft-H	Integration and scale up
Aft-I	Feedstock processing	AFT-J	Nutrient / material recycle	Tt-B	Feed wet biomass

- Contributes to specific MYPP milestones
 - By 2016, review integrated R&D approaches for highyielding algal biofuel intermediates
 - By 2018, demonstrate 2500 gal/yr of biofuel intermediate (non-integrated unit processes)

Summary of Important Results

- Good agreement between maximum predicted and maximum observed productivity of wild type *Chlorella* sorokiniana 1412 (30 g/m²/day)
- Range of HTL bio-crude oil yields 17-33% in nutrient replete conditions, batch mode
- Galdieria cultivation is stable to carbohydrate addition for biomass productivity enhancement; wild-type readily uses cellobiose
- 14 external conference presentations, 2 papers, 0 patents

Questions?

2014 Productivity - G. Sulphuraria 5587.1

Depth		Mean Value (sd)				
10 cm	1.5	3.7	7.4			4.2 g/m²/day (3.0)
	6/4/14-	7/1/14-	7/18/14-			
Date Range	7/1/14	7/18/14	7/23/14			
Duration	28 days	18 days	5 days			
20 cm	6.6	2.3	2.9	3.3	5.9	4.2 g/m²/day (1.9)
	7/1/14-	7/29/14-	7/29/14-	8/25/14-	8/15/14-	
Date Range	7/18/14	8/15/14	8/22/14	10/10/10	9/5/14	
Duration	18 days	18 days	25 days	46 days	21 days	

- Tested productivity and HTL yields on a single *G. sulphuraria* and a single *C. merolae* strain among the Acidophilic Red Algae (Cyanidiales).
- Lammers started a collaboration with Dr. Sherry Cady at PNNL who manages the Culture Collection of Microorganisms from Extreme Environments.
- Plan to screen more Cyanidiales for important phenotypes:
 - Cell wall thickness or lack of cell walls (transformability, Andreas Weber)

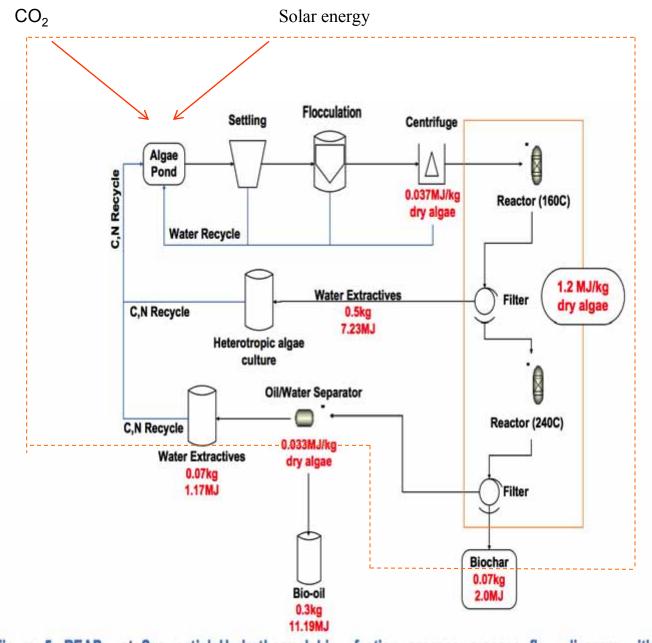


Figure 5. REAP wet Sequential Hydrothermal Liquefaction process process flow diagram with energy budget. Energy values are normalized to algal ash free dry weight.