

Growing the World's Fuels

Sapphire Energy®

BETO 2015 Project Peer Review

March 2015

Goal Statement

Overall objective: Sapphire Energy, Inc. is developing an end-to-end process to produce renewable, algae-based fuel that is fungible with existing refinery streams. This project aims to address three Priority Areas: (1) improve algal <u>biomass</u> <u>productivity</u> in outdoor cultivation environments relevant to commercial scales; (2) improve <u>pre-processing technologies</u> that can be integrated at scale with biomass production; and (3) successfully <u>integrate</u> Priority Areas 1 and 2 to ensure that target yields are met at a scale that enables production of cost-competitive fuels and products. In addressing each of these priority areas, we aim to demonstrate sufficient improvements in algal biomass yield at lab and outdoor pilot scales in the first 24 months to provide a positive indication towards the likely success of a 1-acre demonstration of 2,500 gallons per acre per year oil productivity by 2018.

<u>Relevance and Outcomes for the United States</u>: The advancement of the algal technology platform strategized in this project is aligned with the Bioenergy Technologies Office's mission to transform renewable biomass resources into commercially viable fuels. This would allow for a reduction in both greenhouse gas emissions relative to petroleum-based fuels along with a reduction in the United States' dependence on foreign oil

Quad Chart Overview

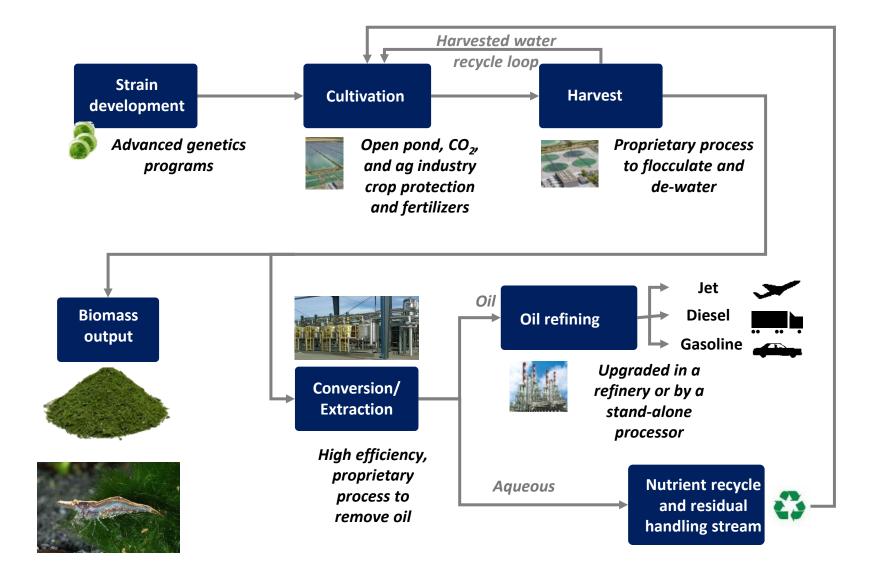
<u>Timeline</u>

- Project start: Mar 2014
- Project end: Aug 2016
- Percent complete: 40%

Recast budget

	FY 14 Costs (\$000's)	FY 15 Costs (\$000's)	FY 16 Costs (\$000's)	Total Planned Funding (\$000's)
DOE Funded	1,107	3,317	577	5,000
Project Cost Share	303	908	508	1,720

Barriers addressed


- Unlock algal and terrestrial biomass productivity
- Algal feedstock processing

Technical partners

- Institute for Systems Biology: 32%
- NREL: 4%
- Penn State University: 2%
- University of Virginia: 1%

Overview of Sapphire Energy's process

High-level Objectives

Priority Area 1 – Improvements in algal biomass productivity

Objective 1: Improve biomass productivity of current production strains using Evolutionary Engineering (EE) approaches.

Objective 2: Improve biomass yield through rational strain design by (1) doing a complete functional annotation and comparative genomic analysis of the model algae *Chlamydomonas reinhardtii* and our production strains, (2) build a gene regulatory network model based on growth and environmental influences to understand transcriptional responses to environmental perturbations and integrate with a metabolic flux balance model, (3) use the integrated gene regulatory network-metabolic model to identify and rank target genes for optimization of fuel production, and, and (4) validate the model by incorporating target genes into field optimized strains to achieve higher yields.

Objective 3: Understand the ecology of microbial communities under open-pond conditions and through engineering communities and establishing approaches for management of open pond ecosystems that confer improved performance and robustness across abiotic, biotic, and nutritional gradients, decrease the annual variance of algal biomass productivity.

High-level Objectives

Priority Area 2 – Improvements in pre-processing technologies

Objective 4: Develop methods to harvest algae to decrease cost.

Objective 5: Improve yield from hydrothermal treatment (HTT) process through (1) reducing water post-harvest/pre-HTT, (2) conducting detailed characterization of process oils and product streams and (3) developing a generalized, strain-independent kinetic reaction network model to better predict bio-crude yields as a function of HTT time and temperature.

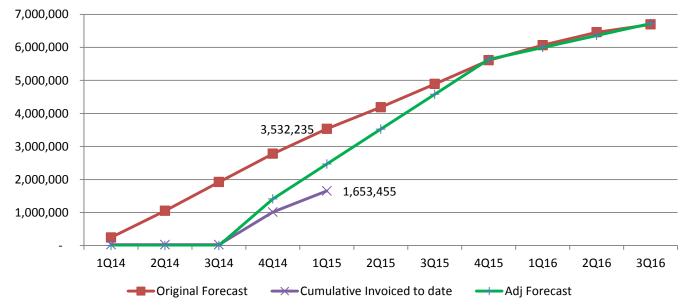
High-level Objectives

Priority Area 3 – Technical advances that enable integration of algal biomass unit operations

Objective 6: Using strains in Objective 1 studies, maximize integration and technoeconomics of the biocrude process through nutrient recycling.

Objective 7: Expand the current techno-economic model—which incorporates cultivation, harvest, conversion, and extraction processes from end-to-end based on single sets of parameters—to allow process modeling over extended periods and with changing parameters.

Objective 8: Integration of life cycle assessment in process development and decisionmaking process for research options to ensure a maximum energy return on investment (EROI) and minimum life cycle greenhouse gas (GHG) emissions.



Project Start-up History

20	13	2014					20	15	2016							
3Q13	4Q13	1Q14	2Q14	3Q14	4Q14	1Q15	2Q15	3Q15	4Q15	1Q16	3Q16					
★ Original planned award notice																
		× N	Nodified	projected	d award n	otice										
		Sor	ne activities s	started at risk	>											
				1	Actual a	ward no	tice									
						J	All priority	areas wor	ongoing							

Cash Flow Summary

Approach – Technical and Management

Technical approach

- Sapphire is employing three approaches to improve field biomass productivity
 - Streamlined non-GMO evolutionary engineering approaches
 - Ecological engineering for yield stability
 - Building an algal model to generate novel targets for GM-based yield increases
- Pre-processing and integration work streams are strategized to ensure that we are improving the entire technology platform and not only the biomass productivity piece

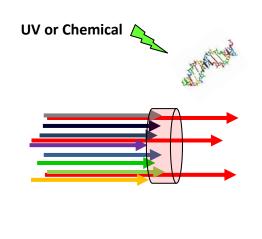
Success factors

- Sapphire's research and development process is conducted alongside a sophisticated technoeconomic model
- Many outputs are important for this project (e.g., biomass productivity, gallons of Green Crude per acre per year)
- Ultimate metric is cost per barrel of Green Crude assuming production in a commercial facility

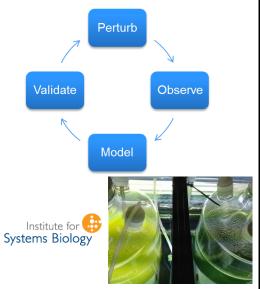
Challenges

- State of progress on non-project work (*e.g.*, oil content, crop protection)
- Continued interest from investors to develop an algae-to-oil process
- Translation of experiences and approaches to the commercial strain
- Delayed start to the majority of grant work
- Risk management if decision point targets are not met (but close) review mitigation plans and advance into next stage gate if possible

Technical progress - Overview

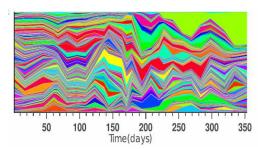

Priority Area/Work		10	1Q14		2Q14		3Q14		4Q14		1Q15		Q15	3Q15		4Q15		1	1Q1(5	20	216	3Q16		4Q16		
Stream		J	FΜ	А	MJ	I I	A S	ΟN	D	J	FΜ	А	M J	JΑ	S	0	N D	J	F	м	A	L N	J	A S	0	N D	
	Quarterly DOE Meeting			•	•	•	•	•			· ·	•	• •	•		•	•	•					•				
1.1 Evolution-based strain engineering	Phase Complete				Can	dida	ate str	ains	Pha	ase l'	\bigstar						Pha	ise l	·۲	k							
1.2 Systems biology	Phase complete							Ca	ndi	date	e ger	nes	Pha	se I			Pha	se II	-	۲		Phase	e III	\bigstar	-		
1.3 Pond Ecology	Phase complete		Revi data		\bigstar	Pha	ase l					Ρ	hase II	★	-												
2.1 Harvest	Phase complete						sess p tling,		e si	ze,	★	Ph	ase I	Pilot proce	PI SSS	hase	"			7	★	Pha	se l	11			
2.2 Hydrothermal treatment (HTT)	Phase complete						mode wate		Pha	se I 🖣	★		Phas	se II 7													
2.3 Oil analysis	Phase complete						Develo metho		aly	sis _	★	Pha	ise l									Phas	se II	\bigstar	-		
3.1 Nutrient recycling	Phase complete						raffina rimen		Pha: <mark>N</mark>	se I 🖣	★	-	Phas	se II 🕇	₹												
3.2 Process modeling	Phase complete						Imp	orove	pro	oces	s mo	ode	Pha	se I								Phas	se II	\star	-		
3.3 Life cycle analysis	Phase complete	Ba: Int	selin egra	ne L ate	.CA into	rev	iew pı	roces	Pha: <mark>S</mark>	se I 🖣	★	-	\star	Phase	e												

Technical progress – Priority area 1


Evolutionary engineering

- Further refinement of the evolutionary engineering platform is complete
- Novel tracking process eliminates the need for a artificially created marker strain
- We have the capability to take any new strain and improve its growth rate

Systems biology


- Experiments have been conducted under various environmental conditions
- Expression data have been collected and are currently being integrated into the model

- 311 new genes have been added to the existing metabolic model
- Putative yield genes will be identified by Q2 2015

Ecology

Studied changes of diversity from year-long growth in Las Cruces, NM

- High throughput platform was developed for evaluating consortia
- Screened a panel of strains across temperature and nutrient gradients
- No consortia was found that outperforms the best single strain
- Several consortia have decreased variance across the gradients explored

Technical progress – Priority area 2

Harvest

- The fundamental objective of this effort is to decrease cost
- Baseline technology utilizes polymer-based dissolved air flotation strategies
- Successfully demonstrated a proof of concept-scale capability to take a 0.05-0.1% algae culture to almost 3%
- Given that the polymer-based dissolved air flotation process achieves approximately the same density, this would significantly decrease both capital expenditure and possibly also operating expenditure.
- Next steps include piloting the new process

Oil characterization

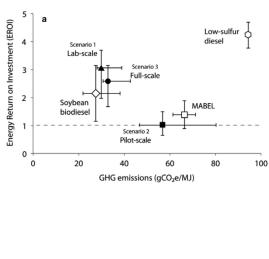
- Due to the polar nature of biocrudes, the relationship between boiling point and molecular weight derived from traditional petroleum crudes do not hold
- Gel permeation
 chromatography conditions
 have largely been completed
 at Sapphire
- High resolution mass spectrometry work is underway at the National Renewable Energy Laboratory in the laboratory of Lieve Laurens

Hydrothermal liquefaction

- Significant progress was made in the HTL area between the submission and funding
- Effort is being re-scoped to ensure that we wisely use DOE funds

Technical progress – Priority area 3

Nutrient recycle


- Significant progress was made in the HTL area between the submission and funding
- We are no longer evaluating several nutrient recycle process options
- The non-oil stream is an aqueous stream that contains some solids
- We have demonstrated nutrient recycle using both the non-oil solid stream and the non-oil aqueous stream

Process modeling

- Process modeling is an important piece of the project with the intent of increasing the resolution of the model and the connectivity with commercial viability
- Included strain options, site location settings, monthly productivity resolution, labor, nutrient cost.
- Included different harvest options, ash content
- Included solvent options, HTL process conditions

Life cycle assessment

- Collaboration with Professor Andres Clarens and Professor Lisa Colosi
- Baseline LCA was conducted prior to the award

Relevance

Meeting the platform goals of BETO MYPP

The described project will directly feed into the Bioenergy Technologies Office Mission and Goals since the objective of the project is to increase the fuel productivity of an integrated process not simply in a laboratory atmosphere. Success will help in laying the foundation of a sustainable, nationwide production of biofuels that is commercially viable.

Application in the emerging bioenergy industry

Performance period 1 is dedicated in developing and piloting the technologies required for improving biomass productivity. All efforts converge into the anticipated performance period 2 where the entire process is to be piloted at a 1 acre scale for an entire year.

Impact on commercial viability

Demonstrating at lab and pilot scale in performance period 1 the necessary performance metrics (e.g., extractable oil fraction, biomass productivity, etc.)

Future work

Next 18 months

Sapphire is working with the DOE on re-scoping the project to ensure the best use of the funds with a continued mindset of progressing the technology of an algae-to-oil platform

Highlight key future milestones

These are dependent on re-scoping discussions

Summary

- Sapphire has made significant progress in strain improvement approaches
- Novel approach for the first step of harvest would have a massive cost impact
- Re-scoping discussions are ongoing to make sure the project is strategically aligned with the objective of the FOA, the mission of BETO, and the core business of Sapphire

