DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review

Managing the Microbial Ecology of a Cyanobacteria-Based Photosynthetic Factory Direct!

Bruce E. Rittmann, Director Swette Center for Environmental Biotechnology Biodesign Institute at Arizona State University

> March 23, 2015 Algae Technology Area Review

> > Principal Investigator Organization

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Goal Statement

- Understand the factors controlling the productivity of a photobioreactor (PBR) that uses laurateexcreting Synechocystis in a Photosynthetic **Factory Direct!**
 - What controls laurate production by Synechocystis?
 - What controls laurate biodegradation by heterotrophic bacteria?
 - What strategies are needed to maximize net production?
- This work will lead to means to increase productivity and lower costs for microalgae-based biofuels. 2

Quad Chart Overview

Timeline

- December 1, 2012
- November 30, 2014
- 100% complete

Barriers

- Barriers addressed
 - Low product yield
 - Poor crop protection
 - High product cost

Budget

	Total Costs FY 10 – FY 12	FY 13 Costs	FY 14 Costs	Total Planned Funding (FY 15- Project End Date
DOE Funded	00	218,037	250,597	27,965
Project Cost Share (Comp.)*	00	55,699	59,886	10,540

Partners

Partners
 None

1 - Project Overview

- History
 - Originally a proposal submitted to NSF EFRI
 - Selected by DoE BETO for funding outside the NSF program
- Technical Direction
 - Enable the "Photosynthetic Factory Direct!"
 - Genetically modified Synechocysistis sp. PCC6803 excretes laurate, a jet fuel precursor
 - We want to maximize the net laurate productivity by:
 - Understanding photosynthetic productivity by Synechocystis
 - Understanding heterotrophic bacteria that biodegrade laurate
 - Testing systems to maximize laurate capture and minimize it biodegradation

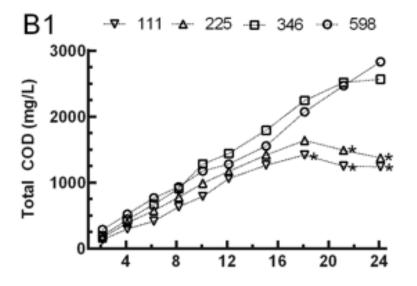
2 – Approach (Technical)

- 1. Fundamental studies on what wild-type and modified *Synechocystis* produce by photosynthesis
 - Organic-C partitioning biomass, SMP, laurate
 - Kinetic control light, nutrients, pH
- 2. Identification and characterization of prevalent strains of heterotrophic bacteria in Synechocystis-based PBRs
 - Phylogenetic diversity
 - Metabolic capability
 - Kinetics
- 3. Practical PBR strategy to minimize heterotrophs and improve laurate harvest

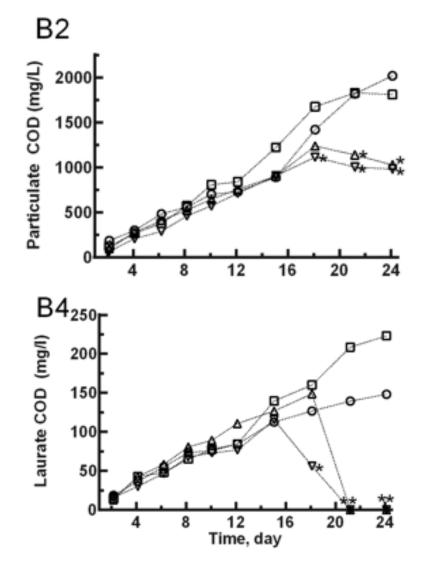
2 – Approach (Management)

- Study carried out totally within the PBR team of the Swette Center for Environmental Biotechnology
- PI Bruce Rittmann
- Co-PI Rosa Krajmalnik-Brown
- PhD Students Alexander Zevin and Binh Nguyen
- Research Technologist Megha Patel
- Two-year project, ended officially on Nov. 30, 2014.

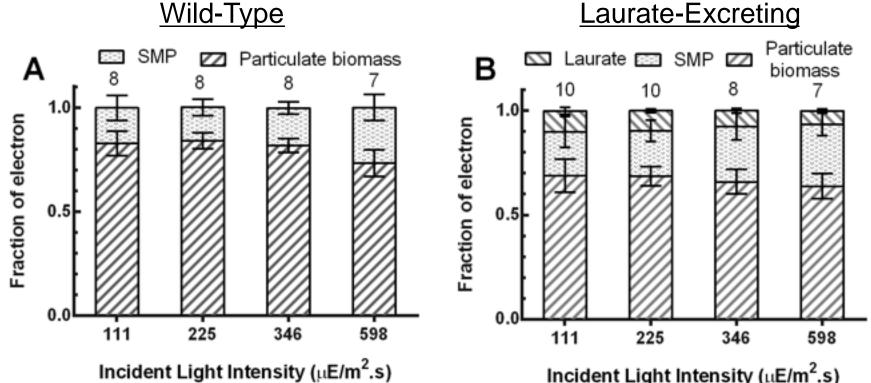
3 – Technical Accomplishments / Results


Due to time limitations, I present highlights from the project

This is ~ 20% of what we did.


Take-home lessons are in blue.

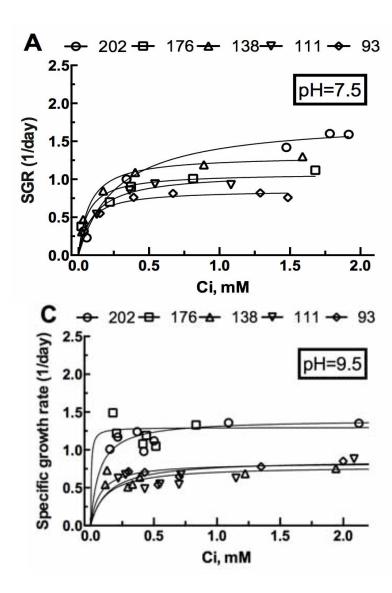
1. Synechocystis

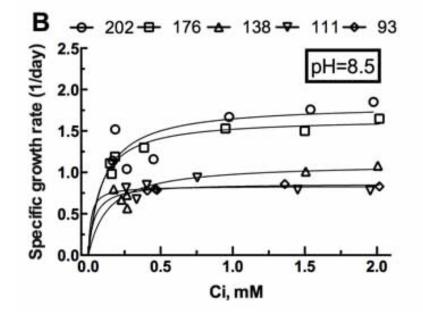

Laurate Production by Modified Synechocystis

Laurate production is proportional to biomass (PCOD) growth.
Laurate is produced at less than 10% of PCOD production.
Two batch runs showed biodegradation of laurate.

What does Synechocystis produce?

Incident Light Intensity (µE/m².s)

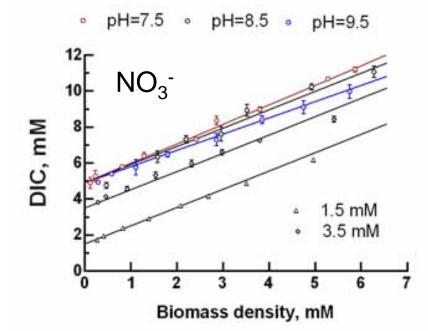

Both strains release at least 20% soluble microbial products (SMP),

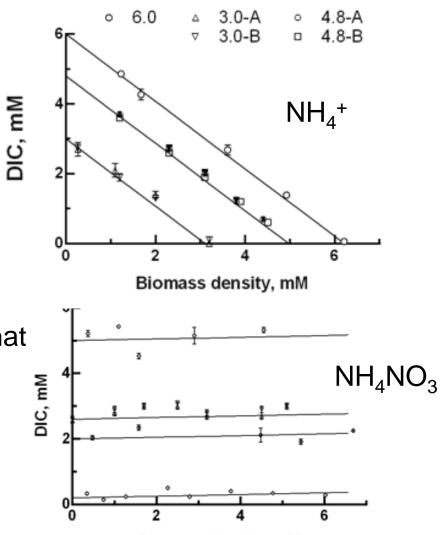

which is not a useful product.

Laurate-excreting strain releases more SMP and \leq 10% laurate. High incident light intensity shifts partitioning to SMP and away fr0m laurate. 10

Therefore, moderate LI and get Synechocystis to produce less SMP!

pH and Inorganic C

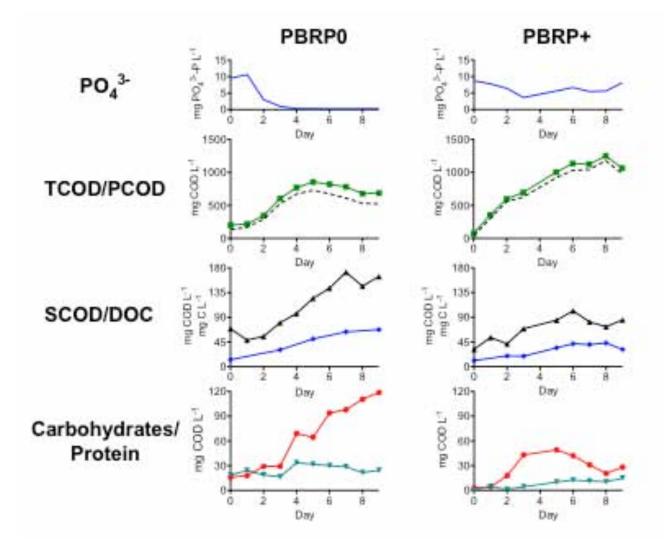




For the laurate-excreting strain, the optimal pH is 8.5, and C_i ≤~0.2 mM (= 2.4 mgC/L) seriously slows photosynthesis.

No need to have very high C_i , but pH control is of true value. $C_i \sim 1 \text{ mM} = 12 \text{ mgC/L}$ and pH of 8 – 9 are good.

Controlling pH and C_i

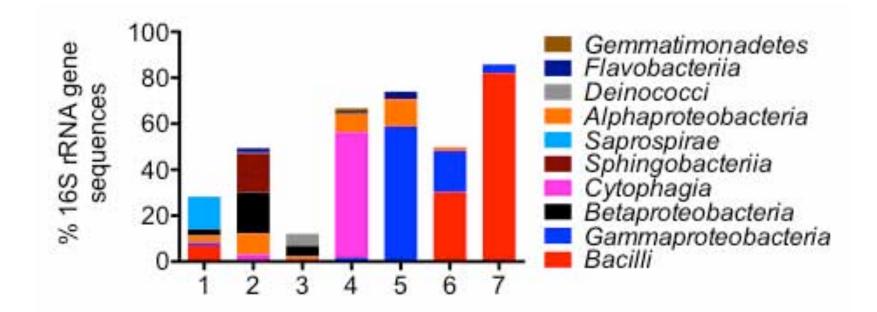

Biomass density, mM

We developed and verified a model that shows that C_i is controlled by the N source in a pH-stat.

Using NO₃⁻ causes Ci to rise with photosynthesis.

Only NH₄NO₃ holds a constant C_i.

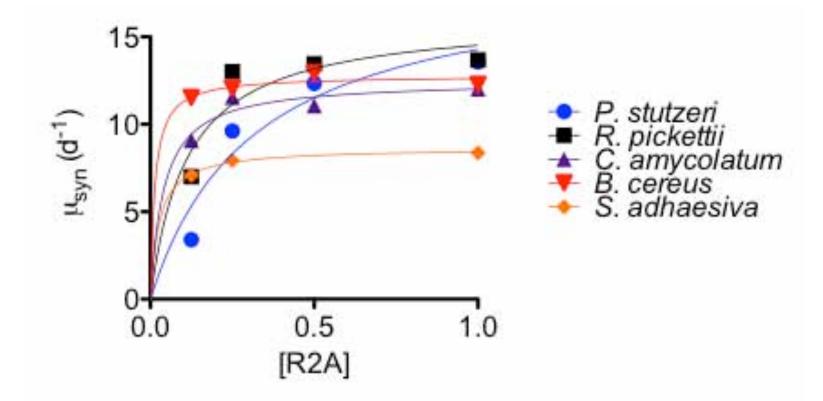
Phosphate Limitation



Depleting phosphate (PBR0) shows dramatic loss of biomass growth (PCOD) and increase of SMP (SCOD) and carbohydrates.

Avoid prolonged P depletion!

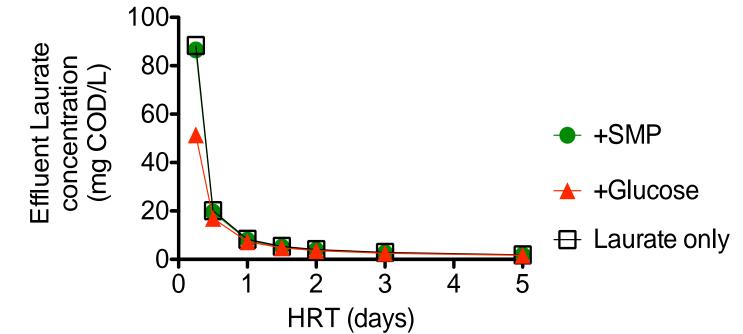
2. Heterotrophs


Heterotrophs in PBRs

Phylogenetic distribution at the class level of heterotrophic bacteria in seven Synechocystis-based PBRs by Illumina high-throughput sequencing.

Great diversity means that the ability to live on SMP from Synechocystis is widespread.

Heterotrophic Catabolism

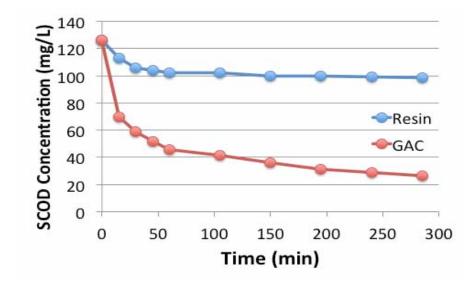

Five PBR isolates grew rapidly on the complex medium R2A. This is a reason why they survive well in PBRs.

Heterotroph Catabolism Kinetics

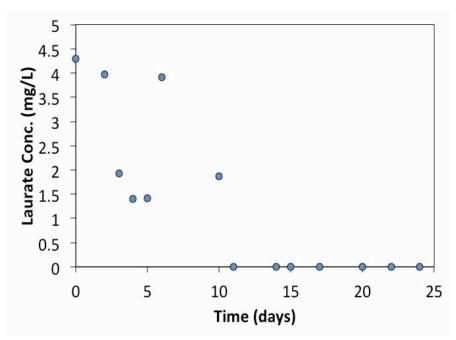
Table C1. Kinetic constants for growth of B2 and <i>ENR1</i> on acetate, laurate, and glucose.									
		Acetate/Laurate		Glucose		SMP			
Constant	Units	P. stutzeri	1-Ac	P. stutzeri	1-Ac	1-Ac			
Ŷ	mg COD/mg COD	0.51/0.5	0.37/0.52	0.52	0.51	0.3			
к	mg COD/L	2.4/8.8	18.8/34.5	44.06	0.17	187.3			
μ_{max}	1/d	6.0/8.8	7.2/5.7	7.3	6.5	1.7			
q _{max}	mg COD/mg COD*d	11.8/17.6	19.5/11.0	13.9	12.7	5.7			
S _{min}	mg COD/L	0.04/0.1	0.7/0.62	0.62	0.003	11.7			
$[\vartheta_x^{min}]_{lim}$	d	0.17/0.11	0.38/0.18	0.14	0.16	0.63			
K _{Pi}	mg P/L	0.045	0.18		•				

Isolated strains consumed rapidly and grew well on acetate, laurate, glucose, and SMP harvested from PBRs. SMP gave slowest growth.

Hard to Wash Out Heterotrophs



Modeled effluent laurate concentrations for a PBR with an initial laurate concentration of 100 mg COD/L and with either 10 mg COD/L SMP or 10 mg COD/L glucose.


Only a very short HRT, which means a very fast specific growth rate, may be able to wash out heterotrophs and preserve laurate. We need a PBR system able to give fast growth of *Synechocystis*. This goes well with the fact that laurate production is proportional to growth!

3. PBR System

SMP Removal and Laurate Harvest

Kinetics of SMP adsorption from membrane permeate of wild-type *Synechocystis* on MP-64 resin and F-300 GAC.

Laurate concentration in the effluent for the PBR with the resin and GAC columns throughout sequencing-batch operation.

A tandem of MP-64 ion-exchange resin (for laurate harvest) and F-300 GAC (for SMP adsorption) could forestall heterotrophic biodegradation.

Need to link this with a PBR system that allows a very fast specific ₂₀ growth rate and laurate-production rate.

4 and 5 – Summary and Relevance

- Laurate-excreting *Synechocystis* generates laurate in proportion to its growth rate. We want a fast specific growth rate.
- Synechocystis partitions more fixed C to SMP than to laurate, especially for high light intensity. We want to modify *Synechocystis* to release less SMP and to use a moderate light intensity.
- Synechocystis does not need a high C_i (<12 mgC/L), but it needs a pH around 8 9 and no P depletion. Control pH and use NH₄NO₃.
- Synechocystis-dominated PBRs have a wide diversity of heterotrophic bacteria.
- Many heterotrophic bacteria are able to consume complex organic materials, such as in SMP.
- Harvest of laurate onto ion-exchange resin and adsorption of SMP by GAC can forestall the onset of heterotrophic biodegradation of laurate.
- Long-term success will require a PBR able to sustain high specific growth rates (to wash out heterotrophs) and possibly modifications to *Synechocystis* so that it produces more laurate and less SMP.

Additional Slides

Publications, Patents, Presentations, Awards, and Commercialization

Publications to date (more expected)

- Nguyen, B., Rittmann, B.E. Electron partitioning into soluble organic products by wild-type and modified *Synechocystis* sp. PCC 6803. Submitted to *Algal Research*.
- Nguyen, B., Rittmann, B.E. Controlling dissolved inorganic carbon in photoautotrophic microalgae culture via the nitrogen source. Submitted to *Algal Research*
- Nguyen, B., Rittmann, B.E. Effects of inorganic carbon and pH on growth kinetics of *Synechocystis* sp. PCC 6803. Submitted to *Algal Research*
- Zevin, A.S., Masters, D.P., Rittmann, B.E., Krajmalnik-Brown, R Phylogenetic characterization of heterotrophic bacteria isolated and enriched from PBR cultures of *Synechocystis* sp. PCC6803. Submitted to *Appl. Environ. Microb*.
- Zevin, A.S., Rittmann, B.E., Krajmalnik-Brown, R. The inoculum source has a strong influence on microbial community structure in *Synechocystis*-based PBRs. Submitted to *Algal Res.*.
- Zevin, A.S., Nam, T.G., Rittmann, B.E., Krajmalnik-Brown, R. Effects of phosphate limitation on soluble microbial products and microbial community structure in semi-continuous *Synechocystis*-based photobioreactors. Submitted to *Biotechnology and Bioengineering*