Goal Statement

• Understand the factors controlling the productivity of a photobioreactor (PBR) that uses laurate-excreting *Synechocystis* in a Photosynthetic Factory Direct!
  – What controls laurate production by *Synechocystis*?
  – What controls laurate biodegradation by heterotrophic bacteria?
  – What strategies are needed to maximize net production?

• This work will lead to means to increase productivity and lower costs for microalgae-based biofuels.
Quad Chart Overview

**Timeline**
- December 1, 2012
- November 30, 2014
- 100% complete

**Barriers**
- Barriers addressed
  - Low product yield
  - Poor crop protection
  - High product cost

**Budget**

<table>
<thead>
<tr>
<th></th>
<th>Total Costs FY 10 – FY 12</th>
<th>FY 13 Costs</th>
<th>FY 14 Costs</th>
<th>Total Planned Funding (FY 15-Project End Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Funded</td>
<td>00</td>
<td>218,037</td>
<td>250,597</td>
<td>27,965</td>
</tr>
<tr>
<td>Project Cost Share (Comp.)*</td>
<td>00</td>
<td>55,699</td>
<td>59,886</td>
<td>10,540</td>
</tr>
</tbody>
</table>

**Partners**
- Partners
  - None
1 - Project Overview

• History
  – Originally a proposal submitted to NSF EFRI
  – Selected by DoE BETO for funding outside the NSF program

• Technical Direction
  – Enable the “Photosynthetic Factory Direct!”
  – Genetically modified *Synechocystis* sp. PCC6803 excretes laurate, a jet fuel precursor
  – We want to maximize the net laurate productivity by:
    • Understanding photosynthetic productivity by *Synechocystis*
    • Understanding heterotrophic bacteria that biodegrade laurate
    • Testing systems to maximize laurate capture and minimize it biodegradation
2 – Approach (Technical)

1. Fundamental studies on what wild-type and modified *Synechocystis* produce by photosynthesis
   • Organic-C partitioning – biomass, SMP, laurate
   • Kinetic control – light, nutrients, pH

2. Identification and characterization of prevalent strains of heterotrophic bacteria in *Synechocystis*-based PBRs
   • Phylogenetic diversity
   • Metabolic capability
   • Kinetics

3. Practical PBR strategy to minimize heterotrophs and improve laurate harvest
2 – Approach (Management)

- Study carried out totally within the PBR team of the Swette Center for Environmental Biotechnology

- PI – Bruce Rittmann
- Co-PI – Rosa Krajmalnik-Brown
- PhD Students – Alexander Zevin and Binh Nguyen
- Research Technologist – Megha Patel

- Two-year project, ended officially on Nov. 30, 2014.
3 – Technical Accomplishments / Results

Due to time limitations, I present highlights from the project

This is ~ 20% of what we did.

Take-home lessons are in blue.
1. *Synechocystis*
Laurate production is proportional to biomass (PCOD) growth.
Laurate is produced at less than 10% of PCOD production.
Two batch runs showed biodegradation of laurate.
What does *Synechocystis* produce?

**Wild-Type**

- Both strains release at least 20% soluble microbial products (SMP), which is not a useful product.
- Laurate-excreting strain releases more SMP and ≤ 10% laurate.
- High incident light intensity shifts partitioning to SMP and away from laurate.

**Laurate-Excreting**

Therefore, moderate LI and get *Synechocystis* to produce less SMP!
For the laurate-excreting strain, the optimal pH is 8.5, and \( C_i \leq 0.2 \text{ mM} \) (= 2.4 mgC/L) seriously slows photosynthesis. No need to have very high \( C_i \), but pH control is of true value. \( C_i \sim 1 \text{ mM} = 12 \text{ mgC/L} \) and pH of 8 – 9 are good.
We developed and verified a model that shows that $C_i$ is controlled by the N source in a pH-stat. Using $\text{NO}_3^-$ causes $C_i$ to rise with photosynthesis. Only $\text{NH}_4\text{NO}_3$ holds a constant $C_i$. 
Phosphate Limitation

Depleting phosphate (PBR0) shows dramatic loss of biomass growth (PCOD) and increase of SMP (SCOD) and carbohydrates.

Avoid prolonged P depletion!
2. Heterotrophs
Heterotrophs in PBRs

Phylogenetic distribution at the class level of heterotrophic bacteria in seven *Synechocystis*-based PBRs by Illumina high-throughput sequencing.

Great diversity means that the ability to live on SMP from *Synechocystis* is widespread.
Heterotrophic Catabolism

Five PBR isolates grew rapidly on the complex medium R2A. This is a reason why they survive well in PBRs.
Isolated strains consumed rapidly and grew well on acetate, laurate, glucose, and SMP harvested from PBRs. SMP gave slowest growth.
Hard to Wash Out Heterotrophs

Modeled effluent laurate concentrations for a PBR with an initial laurate concentration of 100 mg COD/L and with either 10 mg COD/L SMP or 10 mg COD/L glucose.

Only a very short HRT, which means a very fast specific growth rate, may be able to wash out heterotrophs and preserve laurate. We need a PBR system able to give fast growth of *Synechocystis*. This goes well with the fact that laurate production is proportional to growth!
3. PBR System
SMP Removal and Laurate Harvest

A tandem of MP-64 ion-exchange resin (for laurate harvest) and F-300 GAC (for SMP adsorption) could forestall heterotrophic biodegradation.

Need to link this with a PBR system that allows a very fast specific growth rate and laurate-production rate.

Kinetics of SMP adsorption from membrane permeate of wild-type *Synechocystis* on MP-64 resin and F-300 GAC.

Laurate concentration in the effluent for the PBR with the resin and GAC columns throughout sequencing-batch operation.
4 and 5 – Summary and Relevance

• Laurate-excreting *Synechocystis* generates laurate in proportion to its growth rate. *We want a fast specific growth rate.*
• *Synechocystis* partitions more fixed C to SMP than to laurate, especially for high light intensity. *We want to modify *Synechocystis* to release less SMP and to use a moderate light intensity.*
• *Synechocystis* does not need a high $C_i$ (<12 mgC/L), but it needs a pH around 8 – 9 and no P depletion. *Control pH and use NH$_4$NO$_3$.*
• *Synechocystis*-dominated PBRs have a wide diversity of heterotrophic bacteria.
• Many heterotrophic bacteria are able to consume complex organic materials, such as in SMP.
• Harvest of laurate onto ion-exchange resin and adsorption of SMP by GAC can forestall the onset of heterotrophic biodegradation of laurate.
• Long-term success will require a PBR able to sustain high specific growth rates (to wash out heterotrophs) and possibly modifications to *Synechocystis* so that it produces more laurate and less SMP.
Additional Slides
Publications, Patents, Presentations, Awards, and Commercialization

Publications to date (more expected)

• Nguyen, B., Rittmann, B.E. Electron partitioning into soluble organic products by wild-type and modified *Synechocystis* sp. PCC 6803. Submitted to *Algal Research*.
• Nguyen, B., Rittmann, B.E. Controlling dissolved inorganic carbon in photoautotrophic microalgae culture via the nitrogen source. Submitted to *Algal Research*
• Nguyen, B., Rittmann, B.E. Effects of inorganic carbon and pH on growth kinetics of *Synechocystis* sp. PCC 6803. Submitted to *Algal Research*
• Zevin, A.S., Rittmann, B.E., Krajmalnik-Brown, R. The inoculum source has a strong influence on microbial community structure in *Synechocystis*-based PBRs. Submitted to *Algal Res.*.
• Zevin, A.S., Nam, T.G., Rittmann, B.E., Krajmalnik-Brown, R. Effects of phosphate limitation on soluble microbial products and microbial community structure in semi-continuous *Synechocystis*-based photobioreactors. Submitted to *Biotechnology and Bioengineering*