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Microalgae are microscopic plants that make seas, lakes 
and rivers green. Algae and some other organisms use 
sunlight to produce biochemical energy via photosyn-
thesis, the ultimate source of all biofuels. Algal biofuels 
are potentially renewable and their production is sus-
tainable so long as the sun shines. Production of fuels 
and chemicals from renewable algal biomass has the 
potential to be carbon neutral. 

Coal, petroleum and natural gas are cheap and may 
not run out soon. Nevertheless, we have to decide 
whether the adverse economic impact of the greenhouse 
gases associated with the use of fossil fuels outweighs 
their continued use. Many in the scientific community 
are convinced that at current levels, continued emissions 
of manmade greenhouse gases is incompatible with our 
survival. Considering the global environmental impact 
of carbon dioxide emissions, there appears to be no net 
economic benefit of using fossil fuels. Sustainable alter-
natives to fossil fuels are necessary not just for energy 
but also for the many other products that are sourced 
from coal, petroleum and natural gas [1]. Algal fuels are 
one potentially sustainable alternative to fossil fuels.

Algal biofuels have a tremendous variety. 
Photosynthetically produced algal biomass may be used 
directly as a solid biofuel to generate heat, steam and 
electricity. Alternatively, the biomass may be converted 

to gaseous biofuels, such as biogas and biohydrogen, by 
various types of microbial processes [2–9]. Biohydrogen 
can also be produced directly from sunlight using 
photobiological microbial processes [10]. Algal biomass 
can be tailormade to be rich in starch that can be eas-
ily fermented to liquid biofuels such as bioethanol 
and biobutanol [11]. In addition, sunlight can be used 
directly to produce algal bioethanol from carbon diox-
ide without the involvement of a separate fermentation 
step [12]. Some algae are rich in oils [13–15] and others 
can be grown under conditions that favor accumula-
tion of large quantities of oil [14,16]. Algal oils may be 
similar to other vegetable oils, or they may be mainly 
hydrocarbons [13], depending on the algal species used 
to produce them. Algal oils can be converted to diesel, 
gasoline and jet fuel using existing technology [16]. 

In view of their tremendous potential, algae are receiv-
ing much attention as possible sources of energy-dense 
liquid transport fuels [13–20]. Production of algae-based 
liquid fuels is being intensively investigated by nearly 
every major oil company [20–26] and many emerging 
companies [20,27] as a potential replacement for petro-
leum. Direct production of bioethanol via algal photo-
synthesis is being actively developed [12]. Algal crude 
oil and biomass are potentially important renewable 
feedstocks for the future chemical industry [1]. 
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Nearly all the biofuels that can be sourced from 
algae can also be produced by crop plants. Why then 
the interest in algae? This is simply because algae are 
more productive than plants. Under suitable culture 
conditions, the biomass and oil productivity of micro-
algae greatly exceeds that of vascular plants [14,17]. For 
example, the median value of the maximum specific 
growth rate of microalgal species is approximately 
1 day-1 whereas for higher plants it is 0.1 day-1 or less [28]. 
Each algal cell is photosynthetically active whereas only 
a fraction of the plant biomass photosynthesizes. Each 
algal cell can absorb nutrients directly from its sur-
roundings and, therefore, algae do not have to rely on 
energy-consuming, long-distance transport of nutrients 
via roots and stem. 

“Under suitable culture conditions, the biomass and oil 
productivity of microalgae greatly exceeds that of 

vascular plants.”
In addition to light, photosynthesis requires carbon 

dioxide. In plants, photosynthetic tissue can access 
carbon dioxide only through pores known as stomata. 
These pores are not always open and carbon dioxide 
must move through them against a flow of water vapor. 
The carbon dioxide diffusion pathway from the surface 
of the photosynthetic tissue to a photosynthesizing cell is 
much longer in plants than in microalgae and increases 
with increasing thickness of the photosynthetic struc-
ture [28,29]. Algae, therefore, can access carbon dioxide 
more easily than vascular plants and this contributes to 
the relatively rapid growth of algae.

Owing to its high solubility in water, the equilibrium 
concentration of carbon dioxide in an algal suspension 
is greater than in the atmosphere above the suspen-
sion. Effectively, water enriches carbon dioxide that is 
essential for photosynthesis. This too improves algal 
productivity relative to plants. Furthermore, because of 
a short lifecycle, algal biomass can be harvested daily or 
hourly, whereas plant biomass typically remains in the 
field for much longer. 

Unfortunately, owing to the low productivity of 
plants, existing plant-derived biofuels cannot displace 
petroleum-based transport fuels to any significant 

extent [14,17]. This severe limitation can only be overcome 
with a new generation of biofuels such as algae-based 
fuels. Unlike the existing crop-derived biofuels, algal 
fuels can be produced without encroaching on cropland 
and without further deforestation [14,17]. Production of 
algal biofuels need not reduce the supply of food, feed, 
other agricultural products and freshwater [14,17]. 

Production of some existing biofuels demands 
unsustainable inputs of nitrogenous fertilizers, which 
are generated from fossil fuels and require huge inputs 
of energy to produce [30]. Some plant-symbiotic bacte-
ria, algae and other photosynthetic microorganisms can 
naturally convert the atmospheric nitrogen to a form 
that can be used by life forms, but most crop plants and 
microalgae being considered for producing biofuels do 
not do this. Engineering plants and algae for nitrogen 
fixation capability is therefore important for sustainable 
production of biofuels. 

Production of all kinds of biofuels, including bio-
mass itself, can be improved substantially by genetic and 
metabolic engineering [1,14,31–40], bioprocess engineer-
ing [3,14,41,42], the use of extremophilic species [43], and 
in other ways [2]. The future of biofuels is intertwined 
with genetic and metabolic engineering. 

No form of renewable energy can fuel infinite growth 
and, therefore, society will have to learn to live within 
limits, including limits on population. Increasing the 
efficiency of energy use will be essential and will need 
to be achieved without changes to the lifestyle that we 
are accustomed to in the developed world. Within the 
constraints of sustainability, all humanity must attain 
an equitable quality of life. Algal biofuels have a clear 
potential for contributing to environmental, social and 
economic sustainability. 
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